suresh kondamudi

Author Archives: suresh kondamudi

How to Remove Duplicates in a Large Dataset Reducing Memory Requirements by 99%

This is a guest repost by Suresh Kondamudi from CleverTap.

Dealing with large datasets is often daunting. With limited computing resources, particularly memory, it can be challenging to perform even basic tasks like counting distinct elements, membership check, filtering duplicate elements, finding minimum, maximum, top-n elements, or set operations like union, intersection, similarity and so on

Probabilistic Data Structures to the Rescue

Probabilistic data structures can come in pretty handy in these cases, in that they dramatically reduce memory requirements, while still providing acceptable accuracy. Moreover, you get time efficiencies, as lookups (and adds) rely on multiple independent hash functions, which can be parallelized. We use structures like Bloom filtersMinHashCount-min sketchHyperLogLog extensively to solve a variety of problems. One fairly straightforward example is presented below.

The Problem

We at CleverTap manage mobile push notifications for our customers, and one of the things we need to guard against is sending multiple notifications to the same user for the same campaign. Push notifications are routed to individual devices/users based on push notification tokens generated by the mobile platforms. Because of their size (anywhere from 32b to 4kb), it’s non-performant for us to index Continue reading