Vamsi Chemitiganti

Author Archives: Vamsi Chemitiganti

Big Data and Kubernetes – Why Your Spark & Hadoop Workloads Should Run Containerized…(1/4)

Starting this week, we will do a series of four blogposts on the intersection of Spark with Kubernetes. The first blog post will delve into the reasons why both platforms should be integrated. The second will deep-dive into Spark/K8s integration. The third will discuss usecases for Serverless and Big Data Analytics. The last post will round off with insights on best practices. 

Introduction

Most Cloud Native Architectures are designed in response to Digital Business initiatives – where it is important to personalize and to track minute customer interactions. The main components of a Cloud Native Platform inevitably leverage a microservices based design. At the same time, Big Data architectures based on Apache Spark have been implemented at 1000s of enterprises and support multiple data ingest capabilities whether real-time, streaming, interactive SQL platform while performing any kind of data processing (batch, analytical, in memory & graph, based) at the same time providing search, messaging & governance capabilities.

The RDBMS has been a fixture of the monolithic application architecture. Cloud Native applications, however, need to work with data formats of the loosely structured kind as well as the regularly structured data. This implies the need to support data streams that are Continue reading