One of the great promises of IPv6 has been to get rid of NAT, no more will IT do RFC1918 and NAPT to single public IP. But how is IPv6 going to accomplish this, what is the magical toggle for it? Let's get disappointed.
Some devices, like Cisco IOS allow you to configure IPv6 prefix as 'macro', so you could tell that macro 'ME' is 2001:db8::/32 and everywhere where you write IPv6 address, you use macro 'ME'instead. So in theory, when your prefix changes, you simply change the macro. So the great renumbering benefit is ability to always get same size network. But of course this was true for IPv4 too, you got the network size you needed. Why isn't this utilized? Because enterprises don't have one Cisco IOS devices, they have plethora of devices from different vendors, firewalls, slb, ips, ids, servers, OSS systems and so forth, you'd still need to go in all of these to change the 'macro', not all devices even have the concept and quite frankly no enterprise of non-trivial size will even know without months of work _where_ and _what_ will need to be changed for renumbering to be successful. I know industry professionals Continue reading
I've recently noticed that it is becoming more and more common to see 'weird' MAC addresses, i.e. MAC addresses which do not start with numbers 00. Previously it was very easy to spot automatically mentally software defects which would cause strange MAC addresses to appear, it has helped me to diagnose several issues in the past. We've now beginning to lose that advantage, as IEEE has started to allocate MAC addresses quite randomly across the address space.
I emailed to IEEE and asked what was the motivation and perceived advantage in doing this change and reply was quite simply 'We changed our allocation methods to prevent vendors using unregistered mac addresses.'. OUI costs 1650USD one time fee, but IEEE appears to be concerned that some vendors choose not to pay it, instead allocate themselves OUI somewhere far in the address space, effectively thinking they are getting free OUI with little to no possibility of overlap. It would be curious to know if this instance who wants to save 1650USD would care about this slightly changed climate, I personally doubt the change while good-willed is completely ineffective and the slight operational benefit serial assignment had is lost. (/me starts Continue reading
Communications technologies are evolving rapidly. This pace of evolution, while slowed somewhat by economic circumstances, still moves forward at a dramatic pace. This is indicative to the fact that while the ‘bubble’ of the 1990’s is past, society and business as a whole has arrived to the point where communications technologies and their evolution are a requirement for proper and timely interaction with the human environment.
This has profound impact on a number of foundations upon which the premise of these technologies rest. One of the key issues is that of the Internet Protocol, commonly referred to simply as ‘IP’. The current widely accepted version of IP is version 4. The protocol, referred to as IPv4 has served as the foundation to the current Internet since its practical inception in the public arena. As the success of the Internet attests, IPv4 has performed its job well and has provided the evolutionary scope to adapt over the twenty years that has transpired. Like all technologies though IPv4 is reaching the point where further evolution will become difficult and cumbersome if not impossible. As a result, IPv6 was created as a next generation evolution to the IP protocol to address these issues.
Storage as a Service (SaaS) – How in the world do you?
There is a very good reason why cloud storage has so much hype. It simply makes sense. It has an array of attractive use case models. It has a wide range of potential scope and purpose making it as flexible as the meaning of the bits stored. But most importantly, it has a good business model that has attracted some major names into the market sector.
If you read the blog posts and articles, most will say that Cloud Storage will never be accepted due to the lack of security & accountability. The end result is that many CISO’s & CIO’s have decided that it is just too difficult to prove due diligence for compliance. As a result, they have not widely embraced the cloud model. Now while this is correct, it is not totally true. As a matter of fact most folks are actually using Cloud Storage within their environment. They just don’t equate it as such. This article is intended to provide some insight into the use models of SaaS as well as some of the technical and business considerations that need to be made in Continue reading
We are witnessing a major shift from traditional enterprise data centers to much larger warehouse-scale cloud data centers. This is driven by the economics of scale and the benefits of cloud computing, and is happening for both for public and private clouds.
These large data centers need a much higher performance networks that bears little resemblance with traditional enterprise networks. A cloud data center network needs to interconnect many thousands of servers with predictable bandwidth and low-latency.
Our original goal was a switch that could connect 10,000 servers with a simple, 2-stage network, that would deliver predictable Gigabit performance for each server, and do this at a price point that is compatible with web and cloud business models. Just to be clear, such a network requires 10 Terabits/second throughput (10,000 x 1 Gbps), active-active load-sharing redundancy to avoid any single point of failure, and the ability to run 24×7 since there are no maintenance windows in the cloud world.
I am very pleased with the product that resulted from this development, the Arista 7500 data center switch. It turned out really great, even better than we originally anticipated.
The Arista 7500 switch is the highest throughput 10G Ethernet switch in Continue reading