
Author Archives: Ivan Pepelnjak
Author Archives: Ivan Pepelnjak
The previous videos in the How Networks Really Work webinar described some interesting details of data-link layer addresses and network layer addresses. Now for the final bit: how do we map an adjacent network address into a per-interface data link layer address?
If you answered ARP (or ND if you happen to be of IPv6 persuasion) you’re absolutely right… but is that the only way? Watch the Combining Data-Link- and Network Addresses video to find out.
The previous videos in the How Networks Really Work webinar described some interesting details of data-link layer addresses and network layer addresses. Now for the final bit: how do we map an adjacent network address into a per-interface data link layer address?
If you answered ARP (or ND if you happen to be of IPv6 persuasion) you’re absolutely right… but is that the only way? Watch the Combining Data-Link- and Network Addresses video to find out.
Henk Smit made the following claim in one of his comments:
I think BGP-MPLS-VPNs are over-complicated. And you don’t get enough return for that extra complexity.
TL&DR: He’s right (and I just violated Betteridge’s law of headlines)
The history of how we got to the current morass might be interesting for engineers who want to look behind the curtain, so here we go…
Henk Smit made the following claim in one of his comments:
I think BGP-MPLS-VPNs are over-complicated. And you don’t get enough return for that extra complexity.
TL&DR: He’s right (and I just violated Betteridge’s law of headlines)
The history of how we got to the current morass might be interesting for engineers who want to look behind the curtain, so here we go…
A reader sent me the following intriguing question:
I’m trying to understand the ARP behavior with SVI interface configured with anycast gateways of leaf switches, and with distributed anycast gateways configured across the leaf nodes in VXLAN scenario.
Without going into too many details, the core dilemma is: will the ARP request get flooded, and will we get multiple ARP replies. As always, the correct answer is “it depends” 🤷♂️
A reader sent me the following intriguing question:
I’m trying to understand the ARP behavior with SVI interface configured with anycast gateways of leaf switches, and with distributed anycast gateways configured across the leaf nodes in VXLAN scenario.
Without going into too many details, the core dilemma is: will the ARP request get flooded, and will we get multiple ARP replies. As always, the correct answer is “it depends” 🤷♂️
A week ago I described how Cisco IOS implemented BGP Labeled Unicast. In this blog post we’ll focus on Arista EOS using the same lab as before:
BGP sessions in the BGP-LU lab
A week ago I described how Cisco IOS implemented BGP Labeled Unicast. In this blog post we’ll focus on Arista EOS using the same lab as before:
BGP sessions in the BGP-LU lab
Syed Khalid Ali left the following question on an old blog post describing the use of IBGP and EBGP in an enterprise network:
From an enterprise customer perspective, should I run iBGP or iBGP+IGP (OSPF/ISIS/EIGRP) or IGP while doing mutual redistribution on the edge routers. I was hoping if you could share some thoughtful insight on when to select one over the another?
We covered tons of relevant details in the January 2022 Design Clinic, here’s the CliffNotes version. Keep in mind that the road to hell (and broken designs) is paved with great recipes and best practices, and that I’m presenting a black-and-white picture because I don’t feel like transcribing the discussion we had into an oversized blog post. People wrote books on this topic; I’m pretty sure you can search for Russ White and find a few of them.
Finally, there’s no good substitute for understanding how things work (which brings me to another webinar ;).
Syed Khalid Ali left the following question on an old blog post describing the use of IBGP and EBGP in an enterprise network:
From an enterprise customer perspective, should I run iBGP, iBGP+IGP (OSPF/ISIS/EIGRP), or IGP with mutual redistribution on the edge routers? I was hoping you could share some thoughtful insight on when to select one over the other.
We covered many relevant details in the January 2022 Design Clinic; here’s the CliffNotes version. Remember that the road to hell (and broken designs) is paved with great recipes and best practices and that I’m presenting a black-and-white picture because I don’t feel like transcribing our discussion into an oversized blog post. People wrote books on this topic; search for “Russ White books” to find a few.
Finally, there’s no good substitute for understanding how things work (which brings me to another webinar ;).
Iwan Rahabok’s open-source VMware Operations Guide is now also available in Markdown-on-GitHub format. Networking engineers support vSphere/NSX infrastructure might be particularly interested in the Network Metrics chapter.
Iwan Rahabok’s open-source VMware Operations Guide is now also available in Markdown-on-GitHub format. Networking engineers support vSphere/NSX infrastructure might be particularly interested in the Network Metrics chapter.
Would you happen to have your network connectivity data in a tabular format (Excel or similar)? Would you like to make a graph out of that?
Look at the Excel-to-Graphviz solution created by and Salman Naqvi and Roman Urchin. It might not be exactly what you’re looking for, but you might get a few ideas and an inspiration to do something similar.
Would you happen to have your network connectivity data in a tabular format (Excel or similar)? Would you like to make a graph out of that?
Look at the Excel-to-Graphviz solution created by and Salman Naqvi and Roman Urchin. It might not be exactly what you’re looking for, but you might get a few ideas and an inspiration to do something similar.
Should service providers offer managed SD-WAN services? According to Betteridge’s law of headlines, the answer is NO, and that’s exactly what I explained in a short video with the same name.
Turns out there’s not much to explain; even with my usual verbosity I was done in five minutes, so you might want to watch SD-WAN Technical Challenges as well.
Should service providers offer managed SD-WAN services? According to Betteridge’s law of headlines, the answer is NO, and that’s exactly what I explained in a short video with the same name.
Turns out there’s not much to explain; even with my usual verbosity I was done in five minutes, so you might want to watch SD-WAN Technical Challenges as well.
TL&DR: Ansible might decide to reorder list values in a loop parameter, resulting in unexpected order of execution and (in my case) totally borked device configuration.
A bit of a background first: I’m using an Ansible playbook within netsim-tools to deploy initial device configurations. Among other things, that playbook deploys configuration snippets for numerous configuration modules, and the order of deployment is absolutely crucial. For example, you cannot activate BGP neighbors in Labeled Unicast (BGP-LU) address family (mpls module) before configuring BGP neighbors (bgp module).
TL&DR: Ansible might decide to reorder list values in a loop parameter, resulting in unexpected order of execution and (in my case) totally borked device configuration.
A bit of a background first: I’m using an Ansible playbook within netlab to deploy initial device configurations. Among other things, that playbook deploys configuration snippets for numerous configuration modules, and the order of deployment is absolutely crucial. For example, you cannot activate BGP neighbors in Labeled Unicast (BGP-LU) address family (mpls module) before configuring BGP neighbors (bgp module).
While researching the BGP RFCs for the Three Dimensions of BGP Address Family Nerd Knobs, I figured out that the BGP Labeled Unicast (BGP-LU, advertising MPLS labels together with BGP prefixes) uses a different address family. So far so good.
Now for the intricate bit: a BGP router might negotiate IPv4 and IPv4-LU address families with a neighbor. Does that mean that it’s advertising every IPv4 prefix twice, once without a label, and once with a label? Should that be the case, how are those prefixes originated and how are they stored in the BGP table?
As always, the correct answer is “it depends”, this time on the network operating system implementation. This blog post describes Cisco IOS behavior, a follow-up one will focus on Arista EOS.
While researching the BGP RFCs for the Three Dimensions of BGP Address Family Nerd Knobs, I figured out that the BGP Labeled Unicast (BGP-LU, advertising MPLS labels together with BGP prefixes) uses a different address family. So far so good.
Now for the intricate bit: a BGP router might negotiate IPv4 and IPv4-LU address families with a neighbor. Does that mean that it’s advertising every IPv4 prefix twice, once without a label, and once with a label? Should that be the case, how are those prefixes originated and how are they stored in the BGP table?
As always, the correct answer is “it depends”, this time on the network operating system implementation. This blog post describes Cisco IOS behavior, a follow-up one will focus on Arista EOS.