Author Archives: Manav Bhatia
Author Archives: Manav Bhatia
There are a more mobile phone connections (~7.9 billion) than the number of humans (~7.7 billion) colonising this planet.
Let me explain.
Clearly, not every person in the world has a mobile device. Here we’re talking about mobile connections that come from people with multiple devices (dual SIMs, tablets) and other integrated devices like cars, and other smart vehicles, and of course the myriad IOT devices. I don’t have to go too far — my electric 2 wheeler has a mobile connection that it uses to cheerfully download the updated firmware version and the software patches every now and then.
While the global population is growing at 1.08% annually, the mobile phone connections are growing at 2.0%. We will very soon be outnumbered by the number of mobile subscriptions, all happily chatting, tweeting and in general sending data over the network. Some of it would need low latency and low jitter, while some may be more tolerant to the delays and jitter.
What’s the big deal with mobile connections growing?
Well, historically most people have used their mobile phones to talk; to catch up on all the gossip on your neighbours and relatives.
Not anymore.
There are a more mobile phone connections (~7.9 billion) than the number of humans (~7.7 billion) colonising this planet.
Let me explain.
Clearly, not every person in the world has a mobile device. Here we’re talking about mobile connections that come from people with multiple devices (dual SIMs, tablets) and other integrated devices like cars, and other smart vehicles, and of course the myriad IOT devices. I don’t have to go too far — my electric 2 wheeler has a mobile connection that it uses to cheerfully download the updated firmware version and the software patches every now and then.
While the global population is growing at 1.08% annually, the mobile phone connections are growing at 2.0%. We will very soon be outnumbered by the number of mobile subscriptions, all happily chatting, tweeting and in general sending data over the network. Some of it would need low latency and low jitter, while some may be more tolerant to the delays and jitter.
So, what’s the big deal with mobile connections growing?
Well, historically most people have used their mobile phones to talk; to catch up on all the gossip on your neighbours and relatives.
Not Continue reading
Something very interesting is happening in the Indian telecom space these days.
The Indian government is considering a new data localisation law that would require all data around Indian citizens to be stored locally, i.e., within Indian borders. It starts with the fintech companies first, and would then bring in the social media and other IOT companies storing data in its ambit. The Reserve Bank of India (RBI) has cheerfully given a deadline to all fintech companies to ensure that the entire data operated by them, is stored in data centers only in India. Ouch.
RBI so far has refused to accept the representations made by the fintech companies to relax the norms. It’s ruled out the option of data mirroring while addressing the arguments of technological hurdles raised by the fintech companies. It’s instead suggested that companies opt for cloud services or private clouds in order to ensure data localization.
So, what’s data localisation? Data localisation is the process localising the citizen’s data to one’s home country for its processing, storage and collection before it goes through the process of being transferred to an international level. It’s done to ensure the country’s data protection and privacy Continue reading
Something very interesting is happening in the Indian telecom space these days.
The Indian government is considering a new data localisation law that would require all data around Indian citizens to be stored locally, i.e., within Indian borders. It starts with the fintech companies first, and would then bring in the social media and other IOT companies storing data in its ambit. The Reserve Bank of India (RBI) has cheerfully given a deadline to all fintech companies to ensure that the entire data operated by them, is stored in data centers only in India. Ouch.
RBI so far has refused to accept the representations made by the fintech companies to relax the norms. It’s ruled out the option of data mirroring while addressing the arguments of technological hurdles raised by the fintech companies. It’s instead suggested that companies opt for cloud services or private clouds in order to ensure data localization.
So, what’s data localisation? Data localisation is the process localising the citizen’s data to one’s home country for its processing, storage and collection before it goes through the process of being transferred to an international level. It’s done to ensure the country’s data protection and privacy Continue reading
Software, cloud computing and IOT are rapidly transforming networks in a way, and at a rate, never seen before. With software-as-a-service (SaaS) models, enterprises are moving more and more of their critical applications and data to public and hybrid clouds. Enterprise traffic, that never left the corporate network, is now shifting to the Internet, reaching out to different data centers across the globe. Streaming Video (Netflix, Youtube, Hulu, Amazon) accounts for an absurdly high percentage of traffic in the Internet and content providers have built out vast content distribution networks (CDNs) that overlay the Internet backbone. Higher resolutions (HD and UHD) will increase the traffic further, and by some accounts, will be over 80% of the total network traffic by 2020. More and more businesses are being created that reach their customers exclusively over the Internet (Spotify, Amazon, Safari, Zomato, etc). Real-time voice and video communications are moving to cloud-based delivery and network operators are challenged to deliver these services without impacting user quality of experience. And if this was’nt enough, with the advances being made in IOT, we have more devices than ever, lively communicating and chatting in real time over the Internet.
Security becomes a prime concern as Continue reading
Software, cloud computing and IOT are rapidly transforming networks in a way, and at a rate, never seen before. With software-as-a-service (SaaS) models, enterprises are moving more and more of their critical applications and data to public and hybrid clouds. Enterprise traffic, that never left the corporate network, is now shifting to the Internet, reaching out to different data centers across the globe. Streaming Video (Netflix, Youtube, Hulu, Amazon) accounts for an absurdly high percentage of traffic in the Internet and content providers have built out vast content distribution networks (CDNs) that overlay the Internet backbone. Higher resolutions (HD and UHD) will increase the traffic further, and by some accounts, will be over 80% of the total network traffic by 2020. More and more businesses are being created that reach their customers exclusively over the Internet (Spotify, Amazon, Safari, Zomato, etc). Real-time voice and video communications are moving to cloud-based delivery and network operators are challenged to deliver these services without impacting user quality of experience. And if this was’nt enough, with the advances being made in IOT, we have more devices than ever, lively communicating and chatting in real time over the Internet.
Security becomes a prime concern as Continue reading
Lets admit that most of us in the networking domain know as much about SD-WAN as an average 6th grader on fluid mechanics — which is to say pretty much nothing. We take it as something much grander and exotic than what it really is and are obviously surrounded by friends and well-wishers who wink conspiratorially that they “know it all” and consider themselves on an intellectual high ground to educate us on matters of this rich and riveting biological social interaction. Like most others in that tender and impressionable age, i did get swayed by what i heard and its only later that i was able to sort things out in my head, till it all became somewhat clear.
The proverbial clock’s wound backwards and i experience that feeling of deja-vu each time i read an article on SD-WAN that either extols its virtues or vilifies it as something that has always existed and is being speciously served on a platter dressed up as something that it is not. And like the big boys then, there are men who-know-it-all, who have already written SD-WAN off as something that has always existed and really presents nothing new here. Clearly, i disagree with that view.
Lets admit that most of us in the networking domain know as much about SD-WAN as an average 6th grader on sex — which is to say pretty much nothing. We take it as something much grander and exotic than what it really is and are obviously surrounded by friends and well-wishers who wink conspiratorially that they “know it all” and consider themselves on an intellectual high ground to educate us on matters of this rich and riveting biological social interaction. Like most others in that tender and impressionable age, i did get swayed by what i heard and its only later that i was able to sort things out in my head, till it all became somewhat clear — surely i am nowhere close to Mr. Hefner who has, and am willing to wager large amounts here, gamed it entirely and has acquired a skill that only a few of us get blessed with.
The proverbial clock’s wound backwards and i experience that feeling of deja-vu each time i read an article on SD-WAN that either extols its virtues or vilifies it as something that has always existed and is being speciously served on a platter dressed up as something that it is not.
I presume, perhaps a trifle rashly, that you are already Continue reading
Confession Time.
I am guilty of committing several sins. One that egregiously stands out is writing two IETF specs for BFD security (here and here) without considering the impact on the routers and switches implementing those specs. Bear in mind that Bi-directional Forwarding Detection (BFD) is a hard protocol to implement well. Its hard to get into a conversation with engineers working on BFD without a few of them shedding copious quantities of tears on what it took them to avoid those dreaded BFD flaps in scaled setups. They will tell you how they resorted to clever tricks (hacks, if you will) to process BFD packets as fast as they could (plucking them out of order from a shared queue, dedicated tasks picking up BFD packets in the ISR contexts, etc) . In a candid conversation, an ex-employee of a reputed vendor revealed how they stage managed their BFD during a demo to a major customer since they didnt want their BFD to flap while the show (completely scripted) was on. So, long story short — BFD is hard when you start scaling. It just becomes a LOT worse, when you add security on top of it.
The reason BFD is hard is because of Continue reading
Confession Time.
I am guilty of committing several sins. One that egregiously stands out is writing two IETF specs for BFD security (here and here) without considering the impact on the routers and switches implementing those specs. Bear in mind that Bi-directional Forwarding Detection (BFD) is a hard protocol to implement well. Its hard to get into a conversation with engineers working on BFD without a few of them shedding copious quantities of tears on what it took them to avoid those dreaded BFD flaps in scaled setups. They will tell you how they resorted to clever tricks (hacks, if you will) to process BFD packets as fast as they could (plucking them out of order from a shared queue, dedicated tasks picking up BFD packets in the ISR contexts, etc) . In a candid conversation, an ex-employee of a reputed vendor revealed how they stage managed their BFD during a demo to a major customer since they didnt want their BFD to flap while the show (completely scripted) was on. So, long story short — BFD is hard when you start scaling. It just becomes a LOT worse, when you add security on top of it.
The reason BFD is hard is because of Continue reading
Customer Premises Equipment (CPE) devices have always been a pain point for the service providers. One, they need to be installed in large large numbers (surely you remember the truck rolls that need to be sent out), and second, and more importantly, they get complex and costlier with time. As services and technology evolve, these need to be replaced with something more uglier and meaner than what existed before. In a large network, managing all the CPEs — right from the configuration, activation, monitoring, upgrading and efficiently adding more services – in itself becomes a full time job (and not the one with utmost satisfaction i must add).
ETSI’s Use case #2 describes how the CPE device can be virtualized. The idea is to replace the physical CPEs with all the services it supports on an industry standard server that is and cheaper and easier to manage. Doing this can reduce the number and complexity of the CPE devices that need to be installed at the customer sites.
The jury is still out on the specific functions that can be moved out of the CPE. Clearly, what everybody agrees to is a need for a device that will physically connect the customer to the network. Continue reading
When i started looking at NFV, i always imagined it being relegated to places in the network that would receive only teeny weeny amount of data traffic since the commodity hardware and software could only handle so much of traffic. I also naively believed that it would be deployed in networks where customers were not uber-sensitive to latency and delay (broadband customers, etc). So if somebody really wanted a loud bang for their buck they had to use specialized hardware to support the network function. You couldnt really use Intel x86-based servers running SW serving customers for whom QoS and QoE were critical and vital. The two examples that leap to my mind are (i) Evolved Packet Core (EPC) functions such as Mobility Management Entity (MME) and BNG environments where the users need to be authorized before they can expect to receive any meaningful services.
While i understood that servers were getting powerful and Intel was doing its bit with its Data Plane Development Kit (DPDK) architecture, it didnt occur to me till recently that we would be seeing servers handling traffic at 10G+ line rate. Vyatta, a Brocade company now, uses vRouters to implement real network functions. Vyatta started with its modest 5400 vRouter that could Continue reading
Last IETF i ran into a couple of hallway discussions where the folks were having a lively debate on whether Network Function Virtualization (NFV) and Software Defined Networking (SDN) will eventually sound the death knell for huge clunky hardware vendors like Cisco, Juniper, Alcatel-Lucent, etc. I was quickly apprised about some Wall Street analyst’s report that projected a significant drop in Cisco’s revenue over the next couple of years as service providers moved to SDN and NFV solutions . I heard claims about how physical routers (that i so lovingly build in AlaLu) will get replaced by virtual routers (vRouters) and other server based software that even small startups could build. The barrier to entry in the service provider markets had suddenly been lowered and the monopoly of the big 3 was being ominously challenged. There was talk about capex spending reduction happening in the service provider networks and how a few operators were holding on to their purchase orders to see how the SDN and NFV story unfurled. There was then a different camp that believed that while SDN and NFV promised several things, it would take time before things got really deployed and started affecting capex spending and OEM’s revenues.
So whats the deal?
Based on my conversation with several Continue reading
We all love Bi-directional Forwarding Detection (BFD) and cant possibly imagine our lives without it. We love it so much that we were ready with sabers and daggers drawn when we approached IEEE to let BFD control the individual links inside a LAG — something thats traditionally done by LACP.
Having done that, you would imagine that people would have settled down for a while (after their small victory dance of course) — but no, not the folks in the BFD WG. We are now working on a new enhancement that really takes BFD to the next level.
There isnt anything egregiously wrong or missing per se in BFD today. Its just not very optimal in certain scenarios and we’re trying to plug those holes (and doing our bit to ensure that folks in data comm industry have ample work and remain perennially employed).
Ok, lets not be modest – there are some scenarios where it doesnt work (as we shall see).
So what are we fixing here?
Slow Start
Well for one, BFD takes awfully looooong to bring up the session. Remember BFD starts with sedate timers and then slowly picks up (each side needs to come to an agreement on the rate at Continue reading
Apple releases an iOS update and the networks all across the world witness a spike of almost 100% in the average traffic that they receive. Apple delivers its content using Akamai, which allegedly handles 20% of world’s total web traffic. Akamai is thus in a unique position to provide a view of whats happening on the web, at any given instant in time. Akamai logs clearly show an over all increase in Internet traffic and the hotspots in Europe soon after Apple released its iOS7.
Most service providers saw Akami and Limelight traffic up by an average of 300-700% immediately after iOS7 was released.
Being an Android user myself, i found iOS7′s release with the massive increase in the Internet traffic reported all over the world quite insidious. Honestly, i was a trifle concerned with what iOS7 was internally doing to result this.
It turned out to be quite an anti-climax when i realized that the spurt in network traffic was just because of Apple devices upgrading to the newer iOS. The iOS7 upgrade for the phones is around 900MB, and that for the ipads is around 1.2GB. Given that there are quite Continue reading
I was asked a few weeks ago by our field engineers to provide a fix for the OSPF vulnerability exposed by Black Hat last month. Prima facie there appeared nothing new in this attack as everyone knows that OSPF (or ISIS) networks can be brought down by insider attacks. This isnt the first time that OSPF vulnerability has been announced at Black Hat. Way back in 2011 Gabi Nakibly, the researcher at Israel’s Electronic Warfare Research and Simulation Center, had demonstrated how OSPF could be brought down using insider attacks. Folks were not impressed, as anybody who had access to one of the routers could launch attacks on the routing infrastructure. So it was with certain skepticism that i started looking at yet another OSPF vulnerability exposed by Gabi, again at Black Hat. Its only when i started delving deep into the attack vector that the real scale of the attack dawned on me. This attack evades OSPF’s natural fight back mechanism against malacious LSAs which makes it a bit more insidious than the other attacks reported so far.
I exchanged a few emails with Gabi when i heard about his latest exposé. I wanted to understand how this attack Continue reading
If you were unable to access LinkedIn for almost the entire day earlier this week, then you can take solace in the fact that you were not the only one, not able to. Almost half the world shared your misery where all attempts to access LinkedIn (and several other websites) went awry. This purportedly happened because a bunch of hackers decided to poison the DNS entries for LinkedIn and some other well known websites (fidelity.com being another).
Before we delve into the sordid details of this particular incident lets quickly take a look at how DNS works.
Whenever we access linkedin.com, our computer must resolve this human-readable address “linkedin.com” into a computer-readable IP address like “216.52.242.86″ thats hosting this website. It does this by requesting a DNS server to return an IP address that can be used. The DNS server responds with one or more IP addresses with which you can reach linkedin.com. Your computer then connects to that IP address.
So where is this DNS server located that i just spoke about?
This DNS server lies with your Internet service provider, which caches information from other DNS servers. The router that we have at home also Continue reading
Whats the big deal about Data centers and why do they need special routers and switches anyway? Why cant they use the existing switches that folks use in their back offices or service providers in their networks. What’s so special, really, about a bunch of servers that need Internet connectivity, huh?
Working in the metro Ethernet space all my life I wasn’t sure if I really understood the hype and the reason why Data centers required specialized HW.
It’s only once I started reading about Data centers and how they work and what they’re supposed to do that I was able to appreciate their need for specialized HW – and why the existing products may not be cut for them.
In the world of Wall Street, milliseconds can mean billions of dollars. Really, am not kidding here. Packets carrying Wall Street transactions get delivered to the switch and are then forwarded to the server in the Data Center. There they ride up the protocol stack to the application that executes the trade. The commit message then has to go back down the stack and then be sent over the wire to the switch. The switch does a lookup in its Continue reading
There is a lot of hype around OpenFlow as a technology and as a protocol these days. Few envision this to be the most exciting innovation in the networking industry after the vaccum tubes, diodes and transistors were miniaturized to form integrated circuits. This is obviously an exaggeration, but you get the drift, right?
The idea in itself is quite radical. It changes the classical IP forwarding model from one where all decisions are distributed to one where there is a centralized beast – the controller – that takes the forwarding decisions and pushes that state to all the devices (could be routers, switches, WiFi access points, remote access devices such as CPEs) in the network.
Before we get into the details, let’s look at the main components – the Management, Control and the Forwarding (Data) plane – of a networking device. The Management plane is used to manage (CLI, loading firmware, etc) and monitor the device through its connection to the network and also coordinates functions between the Control and the Forwarding plane. Examples of protocols processed in the management plane are SNMP, Telnet, HTTP, Secure HTTP (HTTPS), and SSH.
The Forwarding plane is responsible for forwarding frames Continue reading
Folks who think Authentication Header (AH) is a manna from heavens need to read the Bible again. Thankfully you dont find too many such folks these days. But there are still some who thank Him everyday for blessing their lives with AH. I dread getting stuck with such people in the elevators — actually, i dont think i would like getting stuck with anybody in an elevator, but these are definitely the worst kind to get stuck with.
So lets start from the beginning.
IPsec, for reasons that nobody cares to remember now, decided to come out with two protocols – Encapsulating Security Payload (ESP) and AH, as part of the core architecture. ESP did pretty much what AH did, with the addition of providing encryption services. While both provided data integrity protection, AH went a step further and also secured a few fields from the IP header for you.
There are bigots, and i unfortunately met one a few days ago, who like to argue that AH provides greater security than ESP since AH covers the IP header as well. They parrot this since that’s what most textbooks and wannabe CCIE blogs and websites say. Lets see if securing the IP header Continue reading