Matthew Prince

Author Archives: Matthew Prince

How the Consumer Product Safety Commission is (Inadvertently) Behind the Internet’s Largest DDoS Attacks

How the Consumer Product Safety Commission is (Inadvertently) Behind the Internet’s Largest DDoS Attacks

The mission of the United State's Government's Consumer Product Safety Commission (CPSC) is to protect consumers from injury by products. It's ironic then that the CPSC is playing an unwitting role in most of the largest DDoS attacks seen on the Internet. To understand how, you need to understand a bit about how you launch a high volume DDoS.

How the Consumer Product Safety Commission is (Inadvertently) Behind the Internet’s Largest DDoS Attacks Logo of the Consumer Product Safety Commission

Amplification

DDoS attacks are inherently about an attacker sending more traffic to a victim than the victim can handle. The challenge for an attacker is to find a way to generate a large amount of traffic. Launching a DDoS attack is a criminal act, so an attacker can't simply go sign up for large transit contracts. Instead, attackers find ways to leverage other people's resources.

One of the most effective strategies is known as an amplification attack. In these attacks, an attacker can amplify their resources by reflecting them off other resources online that magnify the level of traffic. The most popular amplification vector is known as DNS reflection.

DNS Reflection

We've written about DNS reflection attacks in detail before. The basics are that an attacker generates DNS requests from a network that allows Continue reading

Empty DDoS Threats: Meet the Armada Collective

Beginning in March 2016, we began hearing reports of a gang of cybercriminals once again calling themselves the Armada Collective. The calling card of the gang was an extortion email sent to a wide variety of online businesses threatening to launch DDoS attacks if they weren't paid in Bitcoin.

Scary Wizard Behind the CurtainFrom The Wizard of Oz (1939)

We heard from more than 100 existing and prospective CloudFlare customers who had received the Armada Collective's emailed threats. We've also compared notes with other DDoS mitigation vendors with customers that had received similar threats.

Our conclusion was a bit of a surprise: we've been unable to find a single incident where the current incarnation of the Armada Collective has actually launched a DDoS attack. In fact, because the extortion emails reuse Bitcoin addresses, there's no way the Armada Collective can tell who has paid and who has not. In spite of that, the cybercrooks have collected hundreds of thousands of dollars in extortion payments.

The Threat

The extortion emails sent by the Armada Collective have been remarkably consistent over the last two months. Here's an example:

To: [Victim Org's Role Account]
From: [email protected]
Subject: DDOS ATTACK!!

FORWARD THIS MAIL TO WHOEVER IS IMPORTANT Continue reading

The Trouble with Tor

The Tor Project makes a browser that allows anyone to surf the Internet anonymously. Tor stands for "the Onion router" and that describes how the service works. Traffic is routed through a number of relays run across the Internet where each relay only knows the next hop (because each hop is enclosed in a cryptographic envelope), not the ultimate destination, until the traffic gets to the final exit node which connects to the website — like peeling the layers of an onion.

Storm clouds over Glastonbury Tor CC BY 2.0 image by Ben Salter

Think of it like a black box: traffic goes into the box, is bounced around between a random set of relays, and ultimately comes out to connect to the requested site. Anonymity is assured because anyone monitoring the network would have a difficult time tying the individuals making the requests going into the black box with the requests coming out.

Importance and Challenges of Anonymity

Anonymity online is important for a number of reasons we at CloudFlare believe in. For instance, Tor is instrumental in ensuring that individuals living in repressive regimes can access information that may otherwise be blocked or illegal. We this is so important that we offer Continue reading

Introducing CloudFlare Registrar: Designed for Security, Not the Masses

CloudFlare Registrar Badge

At CloudFlare, we’ve constructed one of the world’s largest networks purpose-built to protect our customers from a wide range of attacks. We’re so good at it that attackers increasingly look for ways to go around us, rather than go through us. One of the biggest risks for high-profile customers has been having their domain stolen at the registrar.

In 2013, we became intimately familiar with this problem when domains for the New York Times were hijacked and the newspaper’s CTO reached out to us to help get it back. We were able to assist, but the newspaper had its web and email traffic rerouted for hours.

Since the New York Times domain hijack, a number of other sites have had their domains stolen. We ourselves have seen multiple attempts to take control of CloudFlare’s registrar account. Thankfully, none have been successful—but some have gotten closer than we were comfortable with. Given the risk, we began looking for a registrar with security protocols that we could trust.

A Brief History of Registries and Registrars

In the early days of the Internet, domain registration was free. As the Internet began to take off, demand for domain registrations exploded. In 1993, unable to Continue reading

SHA-1 Deprecation: No Browser Left Behind

Welcome to the Internet. All Browsers Welcome

After December 31, 2015, SSL certificates that use the SHA-1 hash algorithm for their signature will be declared technology non grata on the modern Internet. Google's Chrome browser has already begun displaying a warning for SHA-1 based certs that expire after 2015. Other browsers are mirroring Google and, over the course of 2016, will begin issuing warnings and eventually completely distrust connections to sites using SHA-1 signed certs. And, starting January 1, 2016, you will no longer be able to get a new SHA-1 certificate from most certificate authorities.

For the most part, that's a good thing. Prohibitively difficult to forge certificate signatures are part of what keeps encryption systems secure. As computers get faster, the risk that, for any given hashing algorithm, you can forge a certificate with the same signature increases. If an attacker can forge a certificate then they could potentially impersonate the identity of a real site and intercept its encrypted traffic or masquerade as that site.

Deprecating Old Standards

This isn't the first time we've been through this exercise. The original hashing algorithm used for most certificate signatures in the early days of the web was MD5. In 2008, researchers demonstrated they were able to Continue reading

Happy 5th Birthday, CloudFlare!

CloudFlare customers recorded videos to celebrate our first five years

Today is September 27, 2015. It's a rare Super Blood Moon. And it's also CloudFlare's birthday. CloudFlare launched 5 years ago today. It was a Monday. While Michelle, Lee, and I had high expectations, we would never have imagined what's happened since then.

In the last five years we've stopped 7 trillion cyber attacks, saved more than 94,116 years worth of time, and served 99.4 trillion requests — nearly half of those in the last 6 months. You can learn more from this timeline of the last five years.

Celebrating by doing the impossible

CloudFlare's Network in China

Every year we like to celebrate our birthday by giving something seemingly impossible back to our users. Two years ago we enabled on our Automatic IPv6 Gateway, allowing our users to support IPv6 without having to update their own servers. Last year we made Universal SSL support available to all our customers, even those on our free plan. And this year, we announced the expansion across Mainland China, building the first truly global performance and security platform.

Internet Summit & Party

We celebrated in San Francisco last week with CloudFlare's first Internet Summit Continue reading

How We Extended CloudFlare’s Performance and Security Into Mainland China

CloudFlare launched five years ago. Within a year of our launch, the biggest surprise was the strong global demand for our service. From nearly the beginning, China was the second largest source of traffic by country to our network, behind only the United States.

In retrospect, that shouldn't have been a surprise. In 2010, the year we launched, 34% of China's population, or 450 million people, were online. Today, nearly half the country is online. To put it another way, with 700 million people online, China represents a quarter of all Internet users. If your mission is to help build a better Internet, like CloudFlare's is, then China is a country you cannot ignore.

Consequently, starting in 2011, we began to investigate how CloudFlare could bring our service to the Chinese Internet. Four years later, we're excited to announce the extension of CloudFlare's performance and security platform across mainland China. This is the story of how we did it.

The Challenges

There are three major challenges to extending a service like CloudFlare's across mainland China: technical, economic, and regulatory.

Technical

From a technical perspective, the Chinese Internet, despite its many similarities, is different than the rest of the world. Unlike Continue reading

Dear Internet, Send Us Your Videos

alt

CloudFlare turns 5 years old this September. It's been an amazing ride since our launch. Before we launched at TechCrunch Disrupt on September 27, 2010, we'd signed up about 1,000 beta customers. It took us nine months to get those first customers. (By comparison, today we typically sign up 1,000 customers every 3 hours.)

Those first beta customers were instrumental. They put up with us when we were had only one data center (in Chicago). They put up with us as we brought traffic online in our next facilities in Ashburn, Virginia and San Jose, California — and had the routing challenges that came along with running a distributed network for the first time. They sent us bug reports, provided us feature requests, and were instrumental to building the foundation that grew into what is CloudFlare today.

Archival Footage

When we launched, we wanted to feature their stories and experience about CloudFlare so we had them submit their stories by video. Here's the video we included as part of our launch presentation.



I'm proud of the fact that more than 80% of those original 1,000 customers are still using CloudFlare five years later.

Send Us Your Stories

As we Continue reading

CloudFlare’s New Dashboard

When we started CloudFlare, we thought we were building a service to make websites faster and more secure, and we wanted to make the service as easy and accessible as possible. As a result, we built the CloudFlare interface to put basic functions front and center and designed it to look more like a consumer app than the UI for the powerful network it controlled.

Over time, we realized there was a lot more to CloudFlare. In 2011, we added the concept of Apps, and a myriad of additional performance and security features from Rocket Loader to Railgun were added too. All these additional settings got buried under a lowly gear menu next to each site in a customer's account.

alt

While still easier to navigate than the average enterprise app, using our UI could be a frustrating experience. For instance, imagine you wanted to turn on Rocket Loader for multiple sites. You'd have to go to My Websites, click the gear menu next to one of your domains, navigate to CloudFlare Settings, select the Performance Settings tab, scroll to Rocket Loader, then toggle it on. Then you had to go back to My Websites and repeat the process again for Continue reading

Thoughts on Network Neutrality, the FCC, and the Future of Internet Governance

FCC Logo

Today the United States Federal Communications Commission (FCC) voted to extend the rules that previously regulated the telephone industry to now regulate Internet Service Providers (ISPs). The Commission did this in order to preserve the principle of network neutrality. Broadly stated, this principle is that networks should not discriminate against content that passes through them.

At CloudFlare, we are strong proponents of network neutrality. My co-founder, Michelle Zatlyn, sat on the FCC's Open Internet Advisory Committee. The work of that committee played a role in guiding today's vote. So there is a large part of us that is celebrating today.

At the same time, I have deep concerns that proponents of a free and open Internet may look back on today not as a great victory, but as the first step in what may turn out to be a devastating loss. The Internet has largely been governed from the bottom up by technologists seeking rough consensus and running code. Today's action by the FCC may mark the beginning of a new era where the Internet is regulated by lawyers from the top down. As a technologist and recovering lawyer, that worries me.

The Threat to the Network

If you think Continue reading

SSL Week Means Less Weak SSL

CloudFlare SSL Week

I'm excited to announce that today kicks off SSL Week at CloudFlare. Over the course of this week, we'll make a series of announcements on what we're doing to improve encryption on the Internet.

Inherently, for encryption to be the most effective, it has to meet three criteria: 1) it needs to be easy and inexpensive to use; 2) it needs to be fast so it doesn't tax performance; and 3) it needs to be up to date and ahead of the latest vulnerabilities.

Easy, Fast & Secure

Throughout CloudFlare's history, these priorities have guided our approach to encryption. Last September, we announced Universal SSL and brought world class encryption to every CloudFlare customer, even those on our Free service plan. While that effort doubled the size of the encrypted web, our work is far from done. This week we're announcing a series of initiatives that further our efforts to ensure we provide the easiest, fastest, and most secure encryption.

While Universal SSL made it easy to ensure that the connection from a device to CloudFlare was secure, this week we're going to begin the process of making it easy (and free) to ensure the connection from CloudFlare back to Continue reading

SSLv3 Support Disabled By Default Due to POODLE Vulnerability

SSLv3 Vulnerability

For the last week we've been tracking rumors about a new vulnerability in SSL. This specific vulnerability, which was just announced, targets SSLv3. The vulnerability allows an attacker to add padding to a request in order to then calculate the plaintext of encryption using the SSLv3 protocol. Effectively, this allows an attacker to compromise the encryption when using the SSLv3 protocol. Full details have been published by Google in a paper which dubs the bug POODLE (PDF).

Generally, modern browsers will default to a more modern encryption protocol (e.g., TLSv1.2). However, it's possible for an attacker to simulate conditions in many browsers that will cause them to fall back to SSLv3. The risk from this vulnerability is that if an attacker could force a downgrade to SSLv3 then any traffic exchanged over an encrypted connection using that protocol could be intercepted and read.

In response, CloudFlare has disabled SSLv3 across our network by default for all customers. This will have an impact on some older browsers, resulting in an SSL connection error. The biggest impact is Internet Explorer 6 running on Windows XP or older. To quantify this, we've been tracking SSLv3 usage.

SSLv3 Continue reading

Universal SSL: Be just a bit more patient

Universal SSL

It turns out it takes a while to deploy SSL certificates for 2 million websites. :-) Even longer when you get a flood of new sign ups. While we'd hoped to have the deployment complete within 24 hours of the announcement, it now looks like it's going to take a bit longer. We now expect that the full deployment will be complete about 48 hours from now (0700 UTC). Beyond that, nothing about the plan for Universal SSL has changed and hundreds of thousands of sites are already active.

Errors you may see

In order to get through the highest priority sites first, we've prioritized provisioning the sites with the most traffic.

While you wait for your site to get provisioned, you may see a certificate mismatch error if you try and visit it over HTTPS. (Rest assured, there are no errors if you visit over HTTP.) The errors over HTTPS are expected and normal during the provisioning process. Examples of what these error looks like in various browsers )Chrome, Safari, Firefox, and Internet Explorer) are below:

Chrome

Safari

Firefox

Internet Explorer

Tracking our progress

To give you a sense of our progress provisioning Universal SSL for your sites, we've updated the alert that Continue reading

Introducing Universal SSL

CloudFlare's Universal SSL

The team at CloudFlare is excited to announce the release of Universal SSL™. Beginning today, we will support SSL connections to every CloudFlare customer, including the 2 million sites that have signed up for the free version of our service.

This morning we began rolling out the Universal SSL across all our current customers. We expect this process to be complete for all current customers before the end of the day. Yesterday, there were about 2 million sites active on the Internet that supported encrypted connections. By the end of the day today, we'll have doubled that.

For new customers who sign up for CloudFlare's free plan, after we get through provisioning existing customers, it will take up to 24 hours to activate Universal SSL. As always, SSL for paid plans will be provisioned instantly upon signup.

How does it work?

For all customers, we will now automatically provision a SSL certificate on CloudFlare's network that will accept HTTPS connections for a customer's domain and subdomains. Those certificates include an entry for the root domain (e.g., example.com) as well as a wildcard entry for all first-level subdomains (e.g., www.example.com, blog.example.com, etc. Continue reading

One More Thing: Keyless SSL and CloudFlare’s Growing Network

One more thing...

I wanted to write one more thing about Keyless SSL, our announcement from last week, before attention shifts to what we'll be announcing on Monday. Keyless allows us to provide CloudFlare's service without having private SSL keys stored locally on our edge servers. The news last week focused on how this could allow very large customers, like major financial institutions, to use CloudFlare without trusting us with their private keys.

But there's another use that will benefit the entire CloudFlare userbase, not just our largest enterprise customers, and it's this: Keyless SSL is a key part of our strategy to continue to expand CloudFlare's global network.

CloudFlare's Global Network Today

CloudFlare's network today consists of 28 edge data centers that span much of the globe. We have technical and security requirements for these facilities in order to ensure that the equipment they house remains secure. Generally, we're in Tier III or IV data center facilities with the highest level of security. In our San Jose facility, for instance, you have to pass through 5 biometric scans, in addition to multiple 24x7 manned guard check points, before you can get to the electronically locked cabinets housing our servers.

There Continue reading

Celebrating CloudFlare’s 4th Birthday

Save the web / CloudFlare

Since CloudFlare launched to the public four years ago today, we've always considered September 27th our birthday. We like to celebrate by doing something nice for our team and also for our customers. Two years ago, for example, we brought a cake into the office and then enabled free IPv6 support for all our customers.

Saturday is our birthday this year, so we decided to celebrate it a few days later when we'd all be back in the office on Monday, September 29th. That actually corresponds to the day we presented at the finals of the TechCrunch Disrupt startup contest where we launched. We ended up coming in second. Mike Arrington, the founder of TechCrunch, said we were basically "muffler repair for the Internet."

Looking back, that's actually not a bad description. At core, CloudFlare's mission is to help build a better Internet by fixing its biggest problems -- its metaphorical rusty mufflers. This year, we thought it would be great to repair a big, ugly muffler that should have been fixed a long time ago.

This Monday, we'll bring a cake into the office. (It'll have to be a lot bigger as our team has grown substantially.) Continue reading

Announcing Keyless SSL™: All the Benefits of CloudFlare Without Having to Turn Over Your Private SSL Keys

Alt text

CloudFlare is an engineering-driven company. This is a story we're proud of because it embodies the essence of who we are: when faced with a problem, we found a novel solution. Technical details to follow but, until then, welcome to the no hardware world.

Fall in San Francisco

The story begins on a Saturday morning, in the Fall of 2012, almost exactly two years ago. I got a call on my cell phone that woke me. It was a man who introduced himself as the Chief Information Security Officer (CISO) at one of the world's largest banks.

"I got your number from a reporter," he said. "We have an incident. Could you and some of your team be in New York Monday morning? We'd value your advice." We were a small startup. Of course we were going to drop everything and fly across the country to see if we could help.

I called John Roberts and Sri Rao, two members of CloudFlare's team. John had an air of calm about him and owned more khaki pants than any of the rest of us. Sri was a senior member of our technical operations team and could, already at that point, Continue reading

The Relative Cost of Bandwidth Around the World

CC BY 2.0 by Kendrick Erickson

Over the last few months, there’s been increased attention on networks and how they interconnect. CloudFlare runs a large network that interconnects with many others around the world. From our vantage point, we have incredible visibility into global network operations. Given our unique situation, we thought it might be useful to explain how networks operate, and the relative costs of Internet connectivity in different parts of the world.

A Connected Network

The Internet is a vast network made up of a collection of smaller networks. The networks that make up the Internet are connected in two main ways. Networks can connect with each other directly, in which case they are said to be “peered”, or they can connect via an intermediary network known as a “transit provider”.

At the core of the Internet are a handful of very large transit providers that all peer with one another. This group of approximately twelve companies are known as Tier 1 network providers. Whether directly or indirectly, every ISP (Internet Service Provider) around the world connects with one of these Tier 1 providers. And, since the Tier 1 providers are all interconnected themselves, from any point on the network you should be able to reach any other point. That's what makes the Internet the Internet: it’s a huge group of networks that are all interconnected.

Paying to Connect

To be a part of the Internet, CloudFlare buys bandwidth, known as transit, from a number of different providers. The rate we pay for this bandwidth varies from region to region around the world. In some cases we buy from a Tier 1 provider. In other cases, we buy from regional transit providers that either peer with the networks we need to reach directly (bypassing any Tier 1), or interconnect themselves with other transit providers.

CloudFlare buys transit wholesale and on the basis of the capacity we use in any given month. Unlike some cloud services like Amazon Web Services (AWS) or traditional CDNs that bill for individual bits delivered across a network (called "stock"), we pay for a maximum utilization for a period of time (called "flow"). Typically, we pay based on the maximum number of megabits per second we use during a month on any given provider.

Traffic levels across CloudFlare's global network over the last 3 months. Each color represents one of our 28 data centers.

Most transit agreements bill the 95th percentile of utilization in any given month. That means you throw out approximately 36 not-necessarily-contiguous hours worth of peak utilization when calculating usage for the month. Legend has it that in its early days, Google used to take advantage of these contracts by using very little bandwidth for most of the month and then ship its indexes between data centers, a very high bandwidth operation, during one 24-hour period. A clever, if undoubtedly short-lived, strategy to avoid high bandwidth bills.

Another subtlety is that when you buy transit wholesale you typically only pay for traffic coming in (“ingress") or traffic going out (“egress”) of your network, not both. Generally you pay which ever one is greater.

CloudFlare is a caching proxy so egress (out) typically exceeds ingress (in), usually by around 4-5x. Our bandwidth bill is therefore calculated on egress so we don't pay for ingress. This is part of the reason we don't charge extra when a site on our network comes under a DDoS attack. An attack increases our ingress but, unless the attack is very large, our ingress traffic will still not exceed egress, and therefore doesn’t increase our bandwidth bill.

Peering

While we pay for transit, peering directly with other providers is typically free — with some notable exceptions recently highlighted by Netflix. In CloudFlare's case, unlike Netflix, at this time, all our peering is currently "settlement free," meaning we don't pay for it. Therefore, the more we peer the less we pay for bandwidth. Peering also typically increases performance by cutting out intermediaries that may add latency. In general, peering is a good thing.

The chart above shows how CloudFlare has increased the number of networks we peer with over the last three months (both over IPv4 and IPv6). Currently, we peer around 45% of our total traffic globally (depending on the time of day), across nearly 3,000 different peering sessions. The chart below shows the split between peering and transit and how it's improved over the last three months as we’ve added more peers.

North America

We don't disclose exactly what we pay for transit, but I can give you a relative sense of regional differences. To start, let's assume as a benchmark in North America you'd pay a blended average across all the transit providers of $10/Mbps (megabit per second per month). In reality, we pay less than that, but it can serve as a benchmark, and keep the numbers round as we compare regions. If you assume that benchmark, for every 1,000Mbps (1Gbps) you'd pay $10,000/month (again, acknowledge that’s higher than reality, it’s just an illustrative benchmark and keeps the numbers round, bear with me).

While that benchmark establishes the transit price, the effective price for bandwidth in the region is the blended price of transit ($10/Mbps) and peering ($0/Mbps). Every byte delivered over peering is a would-be transit byte that doesn't need to be paid for. While North America has some of the lowest transit pricing in the world, it also has below average rates of peering. The chart below shows the split between peering and transit in the region. While it's gotten better over the last three months, North America still lags behind every other region in the world in terms of peering..

While we peer nearly 40% of traffic globally, we only peer around 20-25% in North America. Assuming the price of transit is the benchmark $10/Mbps in North America without peering, with peering it is effectively $8/Mbps. Based only on bandwidth costs, that makes it the second least expensive region in the world to provide an Internet service like CloudFlare. So what's the least expensive?

Europe

Europe's transit pricing roughly mirrors North America's so, again, assume a benchmark of $10/Mbps. While transit is priced similarly to North America, in Europe there is a significantly higher rate of peering. CloudFlare peers 50-55% of traffic in the region, making the effective bandwidth price $5/Mbps. Because of the high rate of peering and the low transit costs, Europe is the least expensive region in the world for bandwidth.

The higher rate of peering is due in part to the organization of the region's “peering exchanges”. A peering exchange is a service where networks can pay a fee to join, and then easily exchange traffic between each other without having to run individual cables between each others' routers. Networks connect to a peering exchange, run a single cable, and then can connect to many other networks. Since using a port on a router has a cost (routers cost money, have a finite number of ports, and a port used for one network cannot be used for another), and since data centers typically charge a monthly fee for running a cable between two different customers (known as a "cross connect"), connecting to one service, using one port and one cable, and then being able to connect to many networks can be very cost effective.

The value of an exchange depends on the number of networks that are a part of it. The Amsterdam Internet Exchange (AMS-IX), Frankfurt Internet Exchange (DE-CIX), and the London Internet Exchange (LINX) are three of the largest exchanges in the world. (Note: these links point to PeeringDB.com which provides information on peering between networks. You'll need to use the username/password guest/guest in order to login.)

In Europe, and most other regions outside North America, these and other exchanges are generally run as non-profit collectives set up to benefit their member networks. In North America, while there are Internet exchanges, they are typically run by for-profit companies. The largest of these for-profit exchanges in North America are run by Equinix, a data center company, which uses exchanges in its facilities to increase the value of locating equipment there. Since they are run with a profit motive, pricing to join North American exchanges is typically higher than exchanges in the rest of the world.

CloudFlare is a member of many of Equinix's exchanges, but, overall, fewer networks connect with Equinix compared with Europe's exchanges (compare, for instance, Equinix Ashburn, which is their most popular exchange with about 400 networks connected, versus 1,200 networks connected to AMS-IX). In North America the combination of relatively cheap transit, and relatively expensive exchanges lowers the value of joining an exchange. With less networks joining exchanges, there are fewer opportunities for networks to easily peer. The corollary is that in Europe transit is also cheap but peering is very easy, making the effective price of bandwidth in the region the lowest in the world.

Asia

Asia’s peering rates are similar to Europe. Like in Europe, CloudFlare peers 50-55% of traffic in Asia. However, transit pricing is significantly more expensive. Compared with the benchmark of $10/Mbps in North America and Europe, Asia's transit pricing is approximately 7x as expensive ($70/Mbps, based on the benchmark). When peering is taken into account, however, the effective price of bandwidth in the region is $32/Mbps.

There are three primary reasons transit is so much more expensive in Asia. First, there is less competition, and a greater number of large monopoly providers. Second, the market for Internet services is less mature. And finally, if you look at a map of Asia you’ll see a lot of one thing: water. Running undersea cabling is more expensive than running fiber optic cable across land so transit pricing offsets the cost of the infrastructure to move bytes.

Latin America

Latin America is CloudFlare's newest region. When we opened our first data center in Valparaíso, Chile, we delivered 100 percent of our traffic over transit, which you can see from the graph above. To peer traffic in Latin America you need to either be in a "carrier neutral" data center — which means multiple network operators come together in a single building where they can directly plug into each other's routers — or you need to be able to reach an Internet exchange. Both are in short supply in much of Latin America.

The country with the most robust peering ecosystem is Brazil, which also happens to be the largest country and largest source of traffic in the region. You can see that as we brought our São Paulo, Brazil data center online about two months ago we increased our peering in the region significantly. We've also worked out special arrangements with ISPs in Latin America to set up facilities directly in their data centers and peer with their networks, which is what we did in Medellín, Colombia.

While today our peering ratio in Latin America is the best of anywhere in the world at approximately 60 percent, the region's transit pricing is 8x ($80/Mbps) the benchmark of North America and Europe. That means the effective bandwidth pricing in the region is $32/Mbps, or approximately the same as Asia.

Australia

Australia is the most expensive region in which we operate, but for an interesting reason. We peer with virtually every ISP in the region except one: Telstra. Telstra, which controls approximately 50% of the market, and was traditionally the monopoly telecom provider, charges some of the highest transit pricing in the world — 20x the benchmark ($200/Mbps). Given that we are able to peer approximately half of our traffic, the effective bandwidth benchmark price is $100/Mbps.

To give you some sense of how out-of-whack Australia is, at CloudFlare we pay about as much every month for bandwidth to serve all of Europe as we do to for Australia. That’s in spite of the fact that approximately 33x the number of people live in Europe (750 million) versus Australia (22 million).

If Australians wonder why Internet and many other services are more expensive in their country than anywhere else in the world they need only look to Telstra. What's interesting is that Telstra maintains their high pricing even if only delivering traffic inside the country. Given that Australia is one large land mass with relatively concentrated population centers, it's difficult to justify the pricing based on anything other than Telstra's market power. In regions like North America where there is increasing consolidation of networks, Australia's experience with Telstra provides a cautionary tale.

Conclusion

The chart above shows the relative cost of bandwidth assuming a benchmark transit cost of $10/Megabits per second (Mbps) per month (which we know is higher than actual pricing, it’s just a benchmark) in North America and Europe.

While we keep our pricing at CloudFlare straight forward, charging a flat rate regardless of where traffic is delivered around the world, actual bandwidth prices vary dramatically between regions. We’ll continue to work to decrease our transit pricing, and increasing our peering in order to offer the best possible service at the lowest possible price. In the meantime, if you’re an ISP who wants to offer better connectivity to the increasing portion of the Internet behind CloudFlare’s network, we have an open policy and are always happy to peer.

Google Now Factoring HTTPS Support Into Ranking; CloudFlare On Track to Make it Free and Easy

As of today, there are only about 2 million websites that support HTTPS. That's a shamefully low number. Two things are about to happen that we at CloudFlare are hopeful will begin to change that and make everyone love locks (at least on the web!).

CC BY 2.0 by Gregg Tavares

Google Ranks Crypto

First, Google just announced that they will begin taking into account whether a site supports HTTPS connections in their ranking algorithm. This means that if you care about SEO then ensuring your site supports HTTPS should be a top priority. Kudos to Google to giving webmasters a big incentive to add SSL to their sites.

SSL All Things

Second, at CloudFlare we've cleared one of the last major technical hurdle before making SSL available for every one of our customers -- even free customers. One of the challenges we had was ensuring we still had the flexibility to move traffic to sites dynamically between the servers that make up our network. While we can do this easily when traffic is over an HTTP connection, when a connection uses HTTPS we need to ensure that the correct certificates are in place and loaded into memory Continue reading

CloudFlare Now Supports WebSockets

CC BY 2.0 from Brian Snelson

I'm pleased to announce that CloudFlare now supports WebSockets. The ability to protect and accelerate WebSockets has been one of our most requested features. As of today, CloudFlare is rolling out WebSocket support for any Enterprise customer, and a limited set of CloudFlare Business customers. Over the coming months, we expect to extend support to all Business and Pro customers.

We're rolling out WebSockets slowly because it presents a new set of challenges. The story below chronicles the challenges of supporting WebSockets, and what we’ve done to overcome them.

The Web Before WebSockets

Before diving into WebSockets, it's important to understand HTTP—the traditional protocol of the web. HTTP supports a number of different methods by which a request can be sent to a server. When you click on a traditional link you are sending a GET request to a web server. The web server receives the request, then sends a response.

When you submit a web form (such as when you're giving your username and password when logging into an account) you use another HTTP method called POST, but the interaction is functionally the same. Your browser (called the ‘client’) sends data to Continue reading