Author Archives: Russ
Author Archives: Russ
Have you ever wondered why spine-and-leaf networks are the “standard” for data center networks? While the answer has a lot to do with trial and error, it turns out there is also a mathematical reason the fat-tree spine-and-leaf is is used almost universally. There often is some mathematical reason for the decisions made in engineering, although we rarely explore those reasons. If it seems to work, there is probably a reason.
The fat-tree design is explored in a paper published in 2015 (available here at the ACM, and now added to my “classic papers” page so there is a local copy as well), using a novel technique to not only explore why the spine-and-leaf fat-tree is so flexible, but even what the ideal ratio of network capacity is at each stage. The idea begins with this basic concept: one kind of network topology can be emulated on top of another physical topology. For instance, you can emulate a toroid topology on top of a hierarchical network, or a spine-and-leaf on top of of hypercube, etc. To use terms engineers are familiar with in a slightly different way, let’s call the physical topology the underlay, and the emulated topology the overlay. Continue reading
Is the seven-layer OSI model really all that useful any longer? Before you answer, it’s worth listening to my latest short take over at the Network Collective.
I was over at ipspace to talk to Ivan and several other folks about openfabric. This is one of those situations where… Well, the algorithm openfabric uses to calculate fabric location has changed slightly in the last week. Welcome to the world of networking technology.
Many network engineers find the entire world of telecom to be confusing—especially as papers are peppered with a lot of acronyms. If any part of the networking world is more obsessed with acronyms than any other, the telecom world, where the traditional phone line, subscriber access, and network engineering collide, reigns as the “king of the hill.”
Recently, while looking at some documentation for the CORD project, which stands for Central Office Rearchitected as a Data Center, I ran across an acronym I had not seen before—vOLT-HA. An acronym with a dash in the middle—impressive! But what is, exactly? To get there, we must begin in the beginning, with a PON.
There are two kinds of optical networks in the world, Active Optical Networks (AONs), and Passive Optical Networks (PONs). The primary difference between the two is whether the optical gear used to build the network amplifies (or even electronically rebuilds, or repeats) the optical signal as it passes through. In AONs, optical signals are amplified, while ins PONs, optical signals are not amplified. This means that in a PON, the optical equipment can be said to be passive, in that it does not modify the optical signal in Continue reading