Daryll Swer posted a very informative response to my NAT Traversal Mess blog post, focusing on:
Punching holes through that firewall is equivalent to establishing NAT translations.
It would be a shame to let that response wither as small print at the bottom of a blog post; here it is:
As I started describing the iBGP Local-AS Details, I discovered that anything I ever wrote about the BGP local-as feature was hosted on a now-extinct website. Fortunately, I found a copy of that article in the Internet Archive and migrated it to the ipSpace.net blog. Hope you’ll like it ;)
Let’s look at another part of the lengthy comment Bob left after listening to the Rise of NAT podcast. This one is focused on the NAT traversal mess:
You mentioned that only video-conferencing and BitTorrent use client-to-client connectivity (and they are indeed the main use cases), but hell, do they need to engineer complex systems to circumvent these NATs and firewalls: STUN, TURN, ICE, DHT…
Cleaning up the acronym list first: DHT is unlike the others and has nothing to do with NAT.
Did you know you could use the neighbor local-as BGP functionality to fake an iBGP session between different autonomous systems? I knew Cisco IOS supported that monstrosity for ages (supposedly “to merge two ISPs that have different AS numbers”) and added the appropriate tweaks1 into netlab when I added the BGP local-as support in release 1.3.1. Someone couldn’t resist pushing us down that slippery slope, and we ended with IBGP local-as implemented on 18 platforms (almost a dozen network operating systems).
I even wrote a related integration test, and all our implementations passed it until I asked myself a simple question: “But does it work?” and the number of correct implementations that passed the test without warnings dropped to zero.
The EVPN Fundamentals videos (part of the EVPN Technical Deep Dive webinar) are now public; you can watch them without an ipSpace.net account.
Want to spend more time watching free ipSpace.net videos? The complete list is here.
Elmer sent me the following question:
I’ve been working in systems engineering (Linux, virtualization, infrastructure ops) and am considering shifting toward network engineering or architecture. I got my CCNA years ago and started CCNP but didn’t continue.
I’d really appreciate any thoughts you might have on how someone with my background could best make that transition today, especially with how things are evolving around automation and the cloud.
I keep answering a variant of this question every other year or so (2019, 2021, 2023, 2024). I guess it’s time for another answer, so here we go.
Whenever I claimed that EVPN is The SIP of Networking, vendor engineers quickly told me that “EVPN interoperability is a solved problem” and that they run regular multi-vendor interoperability labs to iron out the quirks. As it turns out, things aren’t as rosy in real life; it’s still helpful to have an EVPN equivalent of the DTMF tone generators handy.
I encountered a particularly nasty quirk when running the netlab EVPN integration test using symmetric IRB with an anycast gateway between Nokia SR Linux (or Juniper vSwitch) and FRR container.
Lab topology
Another area where CLNP is a clear winner when compared to the TCP/IP stack is multi-homed nodes (nodes with multiple interfaces, not site multi-homing, where whole networks are connected to two upstream providers).
Multi-homed TCP/IP nodes must have multiple IP addresses because IP uses address interfaces. There is no well-defined procedure in TCP/IP for how a multi-homed node should behave. In the early days of TCP/IP, they tried to address that in RFC 1122 (Host Requirements RFC), but even then, there were two ideas about dealing with multiple interfaces: the strong and weak end system models (more details).
Today is a perfect day to point out the fantastic Why Quantum Cryptanalysis is Bollocks presentation (HT: A blog post by George Michaelson)
It’s a must-read, even if you’re absolutely uninterested in the topic. Just replace “Quantum mumbo-jumbo” with AI or SDN ;) Have fun!
The Dynamic BGP Peers lab exercise gave you the opportunity to build a large-scale environment in which routers having an approved source IP addresses (usually matching an ACL/prefix list) can connect to a BGP route reflector or route server.
In a more controlled environment, you’d want to define BGP neighbors on the BGP RR/RS but not waste CPU cycles trying to establish BGP sessions with unreachable neighbors. Welcome to the world of passive BGP sessions.
Click here to start the lab in your browser using GitHub Codespaces (or set up your own lab infrastructure). After starting the lab environment, change the directory to session/8-passive
and execute netlab up.
Bob left a lengthy comment arguing with the (somewhat black-and-white) claims I made in the Rise of NAT podcast. Let’s start with the any-to-any connectivity:
From my young millennial point of view, the logic is reversed: it is because of NATs and firewalls that the internet became so asymmetrical (client/server) just like the Minitel was designed (yes, I am French), whereas the Internet (and later the web, although a client/server protocol, was meant for everyone to be a client and a server) was designed to be more balanced.
Let’s start with the early Internet. It had no peer-to-peer applications. It connected a few large computers (mainframes) that could act as servers but also allowed terminal-based user access and thus ran per-user clients.
One of the most significant problems engineers face when trying to improve their online presence is the “How do I start writing?” roadblock (hint: publishing bland AI-generated slop won’t get you far unless you aim to become a Thought Leader).
Zvi Mowshowitz collected links to over a dozen different writing styles, starting with JRR Tolkien. I’m pretty sure you’ll find something useful in that vast collection.
Last week, I had to push out netlab release 1.9.6 to address a particularly nasty Python dependency hell to make netlab work (again) on Ubuntu 24.04 (more details). The release also brought these goodies (and a bunch of bug fixes):
This blog post describes another “OMG, this cannot possibly be true” scenario discovered during the netlab VRRP integration testing.
I wanted to test whether we got the nasty nuances of VRRPv3 IPv6 configuration right on all supported platforms and created a simple lab topology in which the device-under-test and an Arista cEOS container would be connected to two IPv6 networks (Arista EOS is a lovely device to use when testing a VRRP cluster because it produces JSON-formatted show vrrp printouts).
Most platforms worked as expected, but Aruba CX, Cumulus Linux with NVUE, and Dell OS10 consistently failed the tests. We were stumped until Jeroen van Bemmel discovered that the Arista container forwards IPv6 router advertisements between the two LAN segments.
In the Router Interfaces and Switch Ports blog post, I described why we have switch ports and routed interfaces on layer-3 switches. Another blog post in the same series described the conceptual architecture of a layer-3 switch:
However, that’s not how we configure layer-3 switches. There’s a significant gap between the conceptual configuration model and the internal architecture:
In the previous blog posts, we discussed how TCP/IP and CLNP reach adjacent nodes and build ARP/ND/ES caches and how they reach off-subnet nodes. Now, let’s move from the network edge into the network core and explore how the two protocol stacks reduce the amount of information they have to propagate in routing protocols.
While I’m not exactly an OSI fan, I must admit they got many things right (and IPv6 copied those ideas), but TCP/IP is a clear winner in this aspect.
I encountered the Escape sequences (named after the first character in the sequence) while programming stuff that would look nicely on the venerable VT100 terminals (not to mention writing one or two VT100 emulators myself).
In the meantime, those sequences got standardized and (par for the course) extended with “proprietary” stuff everyone uses now. Julia Evans did a great job documenting the state of the art. Thanks a million!
This blog post describes yet another bizarre behavior discovered during the netlab integration testing.
It started innocently enough: I was working on the VRRP integration test and wanted to use Arista EOS as the second (probe) device in the VRRP cluster because it produces nice JSON-formatted results that are easy to use in validation tests.
Everything looked great until I ran the test on all platforms on which netlab configures VRRP, and all of them passed apart from Arista EOS (that was before we figured out how Sturgeon’s Law applies to VRRPv3) – a “That’s funny” moment that was directly responsible for me wasting a few hours chasing white rabbits down this trail.
The Queuing Theory webinar by Rachel Traylor is now available without a valid ipSpace.net account. Enjoy!
Like OSPF, IS-IS needs a router to originate the pseudo-node for a LAN segment. IS-IS standards call that router a Designated Intermediate System (DIS), and since it is not responsible for flooding, it does not need a backup.
Want to know more? The Influence the Designated IS Election lab exercise provides the details (and some hands-on work).