Archive

Category Archives for "ipSpace.net"

Video: Functions-as-a-Service Demo

Serverless computing (marketing term for code running on servers managed by other people) is one of the must-have terms if you’re playing a Buzzword Bingo, but what does it really mean and how does the whole thing work?

Matthias Luft and Florian Barth illustrated the concept during the Introduction to Cloud Computing webinar with a short demo in which they build a simple AWS Lambda function. For a more network-centric view, read the Can We Ping a Lambda Function blog post by Noel Boulene.

You need Free or Standard ipSpace.net Subscription to watch the video.

Should We Use LISP?

LISP started as yet-another ocean-boiling project focused initially on solving the “we use locators as identifiers” mess (not quite), and providing scalable IPv6 connectivity over IPv4-only transport networks by adding another layer of indirection and thus yet again proving RFC 1925 rule 6a. At least those are the diagrams I remember from the early “look at this wonderful tool” presentations explaining for example how Facebook is using LISP to deploy IPv6 (more details in this presentation).

Somehow that use case failed to gain traction and so the pivots1 started explaining how one can use LISP to solve IP mobility or IP multihoming or live VM migration, or to implement IP version of conversational learning in Cisco SD-Access. After a few years of those pivots, I started dismissing LISP with a short “cache-based forwarding never worked well” counterargument.

Should We Use LISP?

LISP started as yet-another ocean-boiling project focused initially on solving the “we use locators as identifiers” mess (not quite), and providing scalable IPv6 connectivity over IPv4-only transport networks by adding another layer of indirection and thus yet again proving RFC 1925 rule 6a. At least those are the diagrams I remember from the early “look at this wonderful tool” presentations explaining for example how Facebook is using LISP to deploy IPv6 (more details in this presentation).

Somehow that use case failed to gain traction and so the pivots1 started explaining how one can use LISP to solve IP mobility or IP multihoming or live VM migration, or to implement IP version of conversational learning in Cisco SD-Access. After a few years of those pivots, I started dismissing LISP with a short “cache-based forwarding never worked well” counterargument.

Segment Routing vs LDP in Hub-and-Spoke Networks

I got an interesting question that nicely illustrates why Segment Routing (the MPLS variant) is so much better than LDP. Imagine a redundant hub-and-spoke network with hundreds of spokes. Let’s settle on 500 spokes – IS-IS supposedly has no problem dealing with a link-state topology of that size.

Let’s further assume that all routers advertise only their loopbacks1 and that we’re using unnumbered hub-to-spoke links to minimize the routing table size. The global routing table thus contains ~500 entries. MPLS forwarding tables (LFIB) contain approximately as many entries as each router assigns a label to every prefix in the routing table2. What about the LDP table (LIB – Label Information Base)?

Segment Routing vs LDP in Hub-and-Spoke Networks

I got an interesting question that nicely illustrates why Segment Routing (the MPLS variant) is so much better than LDP. Imagine a redundant hub-and-spoke network with hundreds of spokes. Let’s settle on 500 spokes – IS-IS supposedly has no problem dealing with a link-state topology of that size.

Let’s further assume that all routers advertise only their loopbacks1 and that we’re using unnumbered hub-to-spoke links to minimize the routing table size. The global routing table thus contains ~500 entries. MPLS forwarding tables (LFIB) contain approximately as many entries as each router assigns a label to every prefix in the routing table2. What about the LDP table (LIB – Label Information Base)?

Flow-Based Packet Forwarding

In the Cache-Based Packet Forwarding blog post I described what happens when someone tries to bypass the complexities of IP routing table lookup with a forwarding cache.

Now imagine you want to implement full-featured fast packet forwarding including ingress- and egress ACL, NAT, QoS… but find the required hardware (TCAM) too expensive. Wouldn’t it be nice if we could send the first packet of every flow to a CPU to figure out what to do with it, and download the results into a high-speed flow cache where they could be used to switch the subsequent packets of the same flow. Welcome to flow-based packet forwarding.

Flow-Based Packet Forwarding

In the Cache-Based Packet Forwarding blog post I described what happens when someone tries to bypass the complexities of IP routing table lookup with a forwarding cache.

Now imagine you want to implement full-featured fast packet forwarding including ingress- and egress ACL, NAT, QoS… but find the required hardware (TCAM) too expensive. Wouldn’t it be nice if we could send the first packet of every flow to a CPU to figure out what to do with it, and download the results into a high-speed flow cache where they could be used to switch the subsequent packets of the same flow. Welcome to flow-based packet forwarding.

netsim-tools Release 1.1.3

netsim-tools release 1.1.3 brings a number of goodies, including:

If you’re building your own libvirt boxes, you might also appreciate:

netsim-tools Release 1.1.3

netsim-tools release 1.1.3 brings a number of goodies, including:

Starting with release 1.3, we renamed netsim-tools to netlab.

Worth Reading: AI Makes Animists of Us All

Erik Hoel published a wonderful article describing how he’s fighting the algorithm that is deciding whether to approve a charge on his credit card.

My credit card now has a kami. Such new technological kamis are, just like the ancient ones, fickle; sometimes blessing us, sometimes hindering us, and all we as unwilling animists can do is a modern ritual to the inarticulate fey creatures that control our inboxes and our mortgages and our insurance rates.

There are networking vendors unleashing similar “spirits” on our networks. Welcome to the brave new world ;)

Worth Reading: AI Makes Animists of Us All

Erik Hoel published a wonderful article describing how he’s fighting the algorithm that is deciding whether to approve a charge on his credit card.

My credit card now has a kami. Such new technological kamis are, just like the ancient ones, fickle; sometimes blessing us, sometimes hindering us, and all we as unwilling animists can do is a modern ritual to the inarticulate fey creatures that control our inboxes and our mortgages and our insurance rates.

There are networking vendors unleashing similar “spirits” on our networks. Welcome to the brave new world ;)

Video: Comparing TCP/IP and CLNP

If you were building networks in early 1990s you probably remember at least a half-dozen different network protocols. Only one of them survived (IPv6 came later), with another one (CLNP) providing an interesting view into a totally different parallel universe that evolved using a different set of fundamental principles.

After introducing the network-layer addressing, I compared the two and pointed out where one or the other was clearly better.

You might think that it makes no sense to talk about protocols that were rarely used in old days, and that are almost non-existent today, but as always those who cannot remember the past are doomed to repeat it, this time reinventing CLNP principles in IPv6-based layer-3-only data center fabrics.

You need Free ipSpace.net Subscription to watch the video, and the Standard ipSpace.net Subscription to register for upcoming live sessions.

Video: Comparing TCP/IP and CLNP

If you were building networks in early 1990s you probably remember at least a half-dozen different network protocols. Only one of them survived (IPv6 came later), with another one (CLNP) providing an interesting view into a totally different parallel universe that evolved using a different set of fundamental principles.

After introducing the network-layer addressing, I compared the two and pointed out where one or the other was clearly better.

You might think that it makes no sense to talk about protocols that were rarely used in old days, and that are almost non-existent today, but as always those who cannot remember the past are doomed to repeat it, this time reinventing CLNP principles in IPv6-based layer-3-only data center fabrics.

You need Free ipSpace.net Subscription to watch the video, and the Standard ipSpace.net Subscription to register for upcoming live sessions.

Data Plane Quirks in Virtual Network Devices

Have you noticed an interesting twist in the ICMP Redirects saga: operating systems of some network devices might install redirect entries and use them for control plane traffic – an interesting implementation side effect of the architecture of most modern network devices.

A large majority of network devices run on some variant of Linux or *BSD operating system, the only true exception being ancient operating systems like Cisco IOS1. The network daemons populate various routing protocol tables and compute the best routes that somehow get merged into a single routing table that might still be just a data structure in some user-mode process.

Data Plane Quirks in Virtual Network Devices

Have you noticed an interesting twist in the ICMP Redirects saga: operating systems of some network devices might install redirect entries and use them for control plane traffic – an interesting implementation side effect of the architecture of most modern network devices.

A large majority of network devices run on some variant of Linux or *BSD operating system, the only true exception being ancient operating systems like Cisco IOS1. The network daemons populate various routing protocol tables and compute the best routes that somehow get merged into a single routing table that might still be just a data structure in some user-mode process.

Repost: LISP Is a False Economy

Minh Ha left this comment on the Packet Forwarding 101 blog post. As is usually the case, it’s fun reading and it would be a shame not to repost it as a standalone blog post (even though I don’t necessarily agree with all his conclusions).


I always enjoy Bela’s great insights, esp. on hardware and transport networks, but this time I beg to differ. LISP, is a false economy. It was twisted from the start, unscalable right from the get-go. In Networking and OS, to name (ID) something is to locate it, and vice versa. So the name LISP itself reflects a false distinction. Due to this misconception, LISP proponents are unable to establish the right boundary conditions, leading to the size of xTRs' RIB diverging (going unbounded). In a word, it has come full circle back to BGP, an exemplary manifestation of RFC 1925 rule 6.

1 61 62 63 64 65 178