Sander Steffann sent me an intriguing question a long while ago:
I was wondering if there are any downsides to setting “system mtu jumbo 9198” by default on every switch? I mean, if all connected devices have MTU 1500 they won’t notice that the switch could support longer frames, right?
That’s absolutely correct, and unless the end hosts get into UDP fights things will always work out (aka TCP MSS saves the day)… but there must be a reason switching vendors don’t use maximum frame sizes larger than 1514 by default (Cumulus Linux seems to be an exception, and according to Sébastien Keller Arista’s default maximum frame size is between 9214 and 10178 depending on the platform).
Got this question from one of my readers:
When adopting the BGP on the VM model (say, a Kubernetes worker node on top of vSphere or KVM or Openstack), how do you deal with VM migration to another host (same data center, of course) for maintenance purposes? Do you keep peering with the old ToR even after the migration, or do you use some BGP trickery to allow the VM to peer with whatever ToR it’s closest to?
Short answer: you don’t.
Kubernetes was designed in a way that made worker nodes expendable. The Kubernetes cluster (and all properly designed applications) should recover automatically after a worker node restart. From the purely academic perspective, there’s no reason to migrate VMs running Kubernetes.
Got this question from one of my readers:
When adopting the BGP on the VM model (say, a Kubernetes worker node on top of vSphere or KVM or Openstack), how do you deal with VM migration to another host (same data center, of course) for maintenance purposes? Do you keep peering with the old ToR even after the migration, or do you use some BGP trickery to allow the VM to peer with whatever ToR it’s closest to?
Short answer: you don’t.
Kubernetes was designed in a way that made worker nodes expendable. The Kubernetes cluster (and all properly designed applications) should recover automatically after a worker node restart. From the purely academic perspective, there’s no reason to migrate VMs running Kubernetes.
Antonio Boj enjoyed the Cisco ACI webinars by Mario Rosi and sent me this feedback:
I just wanted to pass you my feedback about the documentation and content of the above webinars. Excellent content, very well organized.
My expectation is always high about your content because I’ve become used to it with other webinars you published. I always look for non-marketing content to understand the technology.
I don’t want to criticize vendors based on assumptions or personal agendas from interested people but evaluate whether or not it is the right path forward for the problem I want to solve, knowing the pros and cons. So again, both webinars about Cisco ACI have given me excellent visibility of the solution. Thank you very much!
Antonio Boj enjoyed the Cisco ACI webinars by Mario Rosi and sent me this feedback:
I just wanted to pass you my feedback about the documentation and content of the above webinars. Excellent content, very well organized.
My expectation is always high about your content because I’ve become used to it with other webinars you published. I always look for non-marketing content to understand the technology.
I don’t want to criticize vendors based on assumptions or personal agendas from interested people but evaluate whether or not it is the right path forward for the problem I want to solve, knowing the pros and cons. So again, both webinars about Cisco ACI have given me excellent visibility of the solution. Thank you very much!
Whenever someone asks me about LISP, I answer, “it’s a nice idea, but cache-based forwarding never worked well.” Oldtimers familiar with the spectacular failures of fast switching and various incarnations of flow switching usually need no further explanation. Unfortunately, that lore is quickly dying out, so let’s start with the fundamentals: how does packet forwarding work?
Packet forwarding used by bridges and routers (or Layer-2/3 switches if you believe in marketing terminology) is just a particular case of statistical multiplexing – a mechanism where many communication streams share the network resources by slicing the data into packets that are sent across the network. The packets are usually forwarded independently; every one of them must contain enough information to be propagated by each intermediate device it encounters on its way across the network.
Whenever someone asks me about LISP, I answer, “it’s a nice idea, but cache-based forwarding never worked well.” Oldtimers familiar with the spectacular failures of fast switching and various incarnations of flow switching usually need no further explanation. Unfortunately, that lore is quickly dying out, so let’s start with the fundamentals: how does packet forwarding work?
Packet forwarding used by bridges and routers (or Layer-2/3 switches if you believe in marketing terminology) is just a particular case of statistical multiplexing – a mechanism where many communication streams share the network resources by slicing the data into packets that are sent across the network. The packets are usually forwarded independently; every one of them must contain enough information to be propagated by each intermediate device it encounters on its way across the network.
Found a pointer to another you cannot beat the laws of physics or networking result: you cannot avoid latency spikes with end-to-end congestion control regardless of the amount of unicorn dust or hype you’re throwing at the problem (original paper).
Found a pointer to another you cannot beat the laws of physics or networking result: you cannot avoid latency spikes with end-to-end congestion control regardless of the amount of unicorn dust or hype you’re throwing at the problem (original paper).
Have to work with VMware SD-WAN (the entity formerly known as VeloCloud)? You might find interesting tidbits in Crazy about VMware SD-WAN by Alexander Marhold.
Have to work with VMware SD-WAN (the entity formerly known as VeloCloud)? You might find interesting tidbits in Crazy about VMware SD-WAN by Alexander Marhold.
After a brief excursion into the ancient data link layer addressing ideas (that you can still find in numerous systems today) and LAN addressing it’s time to focus on network-layer addressing, starting with “can we design protocols without network-layer addresses” (unfortunately, YES) and “should a network-layer address be tied to a node or to an interface” (as always, it depends).
For more details, watch the Network Layer Addressing video (part of How Networks Really Work webinar).
After a brief excursion into the ancient data link layer addressing ideas (that you can still find in numerous systems today) and LAN addressing it’s time to focus on network-layer addressing, starting with “can we design protocols without network-layer addresses” (unfortunately, YES) and “should a network-layer address be tied to a node or to an interface” (as always, it depends).
For more details, watch the Network Layer Addressing video (part of How Networks Really Work webinar).
One of the toughest hurdles to overcome when building your own virtual networking lab is the slog of downloading VM images for your favorite network devices and building Vagrant boxes1 in case you want to use them with Vagrant or netsim-tools.
You can find box-building recipes on the Internet – codingpackets.com has a dozen of them – but they tend to be a bit convoluted and a smidge hard-to-follow the first time you’re trying to build the boxes (trust me, I’ve been there).
One of the toughest hurdles to overcome when building your own virtual networking lab is the slog of downloading VM images for your favorite network devices and building Vagrant boxes1 in case you want to use them with Vagrant or netlab.
You can find box-building recipes on the Internet – codingpackets.com has a dozen of them – but they tend to be a bit convoluted and a smidge hard-to-follow the first time you’re trying to build the boxes (trust me, I’ve been there).
One of my readers sent me an interesting pointer:
I just watched a YouTube video by a security researcher showing how a five line python script can be used to unilaterally configure a Cisco switch port connected to a host computer into a trunk port. It does this by forging a single virtual trunk protocol (VTP) packet. The host can then eavesdrop on broadcast traffic on all VLANs on the network, as well as prosecute man-in-the-middle of attacks.
I’d say that’s a “startling revelation” along the lines of “OMG, VXLAN is insecure” – a wonderful way for a security researcher to gain instant visibility. From a more pragmatic perspective, if you enable an insecure protocol on a user-facing port, you get the results you deserve1.
While I could end this blog post with the above flippant remark, it’s more fun considering two fundamental questions.
One of my readers sent me an interesting pointer:
I just watched a YouTube video by a security researcher showing how a five line python script can be used to unilaterally configure a Cisco switch port connected to a host computer into a trunk port. It does this by forging a single virtual trunk protocol (VTP) packet. The host can then eavesdrop on broadcast traffic on all VLANs on the network, as well as prosecute man-in-the-middle of attacks.
I’d say that’s a “startling revelation” along the lines of “OMG, VXLAN is insecure” – a wonderful way for a security researcher to gain instant visibility. From a more pragmatic perspective, if you enable an insecure protocol on a user-facing port, you get the results you deserve1.
While I could end this blog post with the above flippant remark, it’s more fun considering two fundamental questions.
Here’s another BGP Route Reflector myth:
In a redundant design, you should use Route Reflector Cluster ID to avoid loops.
TL&DR: No.
While BGP route reflectors can cause permanent forwarding loops in sufficiently broken topologies, the Cluster ID was never needed to stop a routing update propagation loop:
Here’s another BGP Route Reflector myth:
In a redundant design, you should use Route Reflector Cluster ID to avoid loops.
TL&DR: No.
While BGP route reflectors can cause permanent forwarding loops in sufficiently broken topologies, the Cluster ID was never needed to stop a routing update propagation loop:
Andy Lemin sent me such a wonderful review of ipSpace.net materials that I simply couldn’t resist publishing it ;)
ipSpace.net is probably my favorite networking resource out there. After spending years with other training content sites which are geared around certifications, ipspace.net provides a totally unique source of vendor neutral opinions, information, and anecdotes – the kind of information that is just not available anywhere else. And to top it off, is presented by a wonderful speaker who is passionate, smart and really knows his stuff!
The difference between an engineer who just has certs versus an engineer who has a rounded and wide view of the whole industry is massive. An engineer with certs can configure your network, but an engineer with all the knowledge this site provides, is someone who can question why and challenge how we can configure your network in a better way.