BGP is one of the foundational protocols that make the Internet “go;” as such, it is a complex intertwined system of different kinds of functionality bundled into a single set of TLVs, attributes, and other functionality. Because it is so widely used, however, BGP tends to gain new capabilities on a regular basis, making the Interdomain Routing (IDR) working group in the Internet Engineering Task Force (IETF) one of the consistently busiest, and hence one of the hardest to keep up with. In this post, I’m going to spend a little time talking about one area in which a lot of work has been taking place, the building and maintenance of peering relationships between BGP speakers.
The first draft to consider is Mitigating the Negative Impact of Maintenance through BGP Session Culling, which is a draft in an operations working group, rather than the IDR working group, and does not make any changes to the operation of BGP. Rather, this draft considers how BGP sessions should be torn down so traffic is properly drained, and the peering shutdown has the minimal effect possible. The normal way of shutting down a link for maintenance would be to for administrators to shut Continue reading
According to Roman philosophers, simplicity is the hallmark of truth. And yet, networks have become ever more complex over time. Why is this? Because complexity sells. In this short take, I talk about why complexity sells, and some of the mental habits you can use to overcome our natural tendency to prefer the complex.
The world of scholarly communication is broken. Giant, corporate publishers with racketeering business practices and profit margins that exceed Apple’s treat life-saving research as a private commodity to be sold at exorbitant profits. Only around 25 per cent of the global corpus of research knowledge is ‘open access’, or accessible to the public for free and without subscription, which is a real impediment to resolving major problems, such as the United Nations’ Sustainable Continue reading
Link speeds in data center fabrics continue to climb, with 10g, 25g, 40g, and 100g widely available, and 400g promised in just a few short years. What isn’t so obvious is how these higher speeds are being reached. A 100g link, for instance, is really four 25g links bundled as a single link at the physical layer. If the optics are increasing in speed, and the processors are increasing in their ability to switch traffic, why are these higher speed links being built in this way? According to the paper under investigation today, the reason is the speed of the chips that serialize traffic from and deserialize traffic off the optical medium. The development of the Complementary metal–oxide–semiconductor, of CMOS, chips required to build ever faster optical interfaces seems to have stalled out at around 25g, which means faster speeds must be achieved by bundling multiple lower speed links.
Mellette, William M., Alex C. Snoeren, and George Porter. “P-FatTree: A Multi-Channel Datacenter Network Topology.” In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 78–84. HotNets ’16. New York, NY, USA: ACM, 2016. https://doi.org/10.1145/3005745.3005746.
The authors then point out that many data operators Continue reading