Recently, Bert Hubert wrote of a growing problem in the networking world: the complexity of DNS. We have two systems we all use in the Internet, DNS and BGP. Both of these systems appear to be able to handle anything we can throw at them and “keep on ticking.”
But how far can we drive the complexity of these systems before they ultimately fail? Bert posted this chart to the APNIC blog to illustrate the problem—
I am old enough to remember when the entire Cisco IOS Software (classic) code base was under 150,000 lines; today, I suspect most BGP and DNS implementations are well over this size. Consider this for a moment—a single protocol implementation that is larger than an entire Network Operating System ten to fifteen years back.
What really grabbed my attention, though, was one of the reasons Bert believes we have these complexity problems—
DNS developers frequently see immense complexity not as a problem but as a welcome challenge to be overcome. We say ‘yes’ to things we should say ‘no’ to. Less gifted developer communities would have to say no automatically since they simply would not be able to implement all that new stuff. Continue reading
With the growing presence and sophistication of online threats like viruses, ransomware, and phishing scams, it’s increasingly important to have the right protection and tools to help protect your devices, personal information, and files from being compromised. Microsoft already provides robust security for Office services, including link checking and attachment scanning for known viruses and phishing threats, encryption in transit and at rest, as well as powerful antivirus protection with Windows Defender. Today, we’re announcing new advanced protection capabilities coming to Office 365 Home and Office 365 Personal subscribers to Continue reading
Reading a paper to build a research post from (yes, I’ll write about the paper in question in a later post!) jogged my memory about an old case that perfectly illustrated the concept of a positive feedback loop leading to a failure. We describe positive feedback loops in Computer Networking Problems and Solutions, and in Navigating Network Complexity, but clear cut examples are hard to find in the wild. Feedback loops almost always contribute to, rather than independently cause, failures.
Many years ago, in a network far away, I was called into a case because EIGRP was failing to converge. The immediate cause was neighbor flaps, in turn caused by Stuck-In-Active (SIA) events. To resolve the situation, someone in the past had set the SIA timers really high, as in around 30 minutes or so. This is a really bad idea. The SIA timer, in EIGRP, is essentially the amount of time you are willing to allow your network to go unconverged in some specific corner cases before the protocol “does something about it.” An SIA event always represents a situation where “someone didn’t answer my query, which means I cannot stay within the state machine, so I Continue reading