Archive

Category Archives for "Russ White"

Whatever is vOLT-HA?

Many network engineers find the entire world of telecom to be confusing—especially as papers are peppered with a lot of acronyms. If any part of the networking world is more obsessed with acronyms than any other, the telecom world, where the traditional phone line, subscriber access, and network engineering collide, reigns as the “king of the hill.”

Recently, while looking at some documentation for the CORD project, which stands for Central Office Rearchitected as a Data Center, I ran across an acronym I had not seen before—vOLT-HA. An acronym with a dash in the middle—impressive! But what is, exactly? To get there, we must begin in the beginning, with a PON.

There are two kinds of optical networks in the world, Active Optical Networks (AONs), and Passive Optical Networks (PONs). The primary difference between the two is whether the optical gear used to build the network amplifies (or even electronically rebuilds, or repeats) the optical signal as it passes through. In AONs, optical signals are amplified, while ins PONs, optical signals are not amplified. This means that in a PON, the optical equipment can be said to be passive, in that it does not modify the optical signal in Continue reading

OSPF Topology Transparent Zones

Anyone who has worked with OSPF for any length of time has at least heard of areas—but perhaps before diving into Topology Transparent Zones (TTZs), a short review is in order.

In this diagram, routers A and B are in area 0, routers C and D are Area Border Routers (ABRs), and routers E, F, G, H, and K are all in area 1. The ABRs, C and D, do not advertise the existence of E, F, G, H, or K to the routers in area 0, nor the links to or between any of those routers. Any reachable destinations in area 1 are advertised using a em>summary LSA, or a type 3 LSA, towards A and B. From the perspective of A and B, 100::/64 and 101::/64 would be advertised by C and D as directly connected destinations, using the cost from C and D to each of these two destinations, based on a summary LSA.

What if you wanted to place H and K in their own area, with G as an ABR, behind the existing area 1? You cannot do this in OSPF using any form of a standard flooding domain, or area. There is no way Continue reading

Reaction: DNS Complexity Lessons

Recently, Bert Hubert wrote of a growing problem in the networking world: the complexity of DNS. We have two systems we all use in the Internet, DNS and BGP. Both of these systems appear to be able to handle anything we can throw at them and “keep on ticking.”

But how far can we drive the complexity of these systems before they ultimately fail? Bert posted this chart to the APNIC blog to illustrate the problem—

I am old enough to remember when the entire Cisco IOS Software (classic) code base was under 150,000 lines; today, I suspect most BGP and DNS implementations are well over this size. Consider this for a moment—a single protocol implementation that is larger than an entire Network Operating System ten to fifteen years back.

What really grabbed my attention, though, was one of the reasons Bert believes we have these complexity problems—

DNS developers frequently see immense complexity not as a problem but as a welcome challenge to be overcome. We say ‘yes’ to things we should say ‘no’ to. Less gifted developer communities would have to say no automatically since they simply would not be able to implement all that new stuff. Continue reading

1 61 62 63 64 65 165