Author Archives: Ivan Pepelnjak
Author Archives: Ivan Pepelnjak
Here’s another challenge for BGP aficionados: build an MPLS-based transit network without BGP running on core routers.
That should be an easy task if you configured MPLS in the past, so try to spice it up a bit:
Here’s another challenge for BGP aficionados: build an MPLS-based transit network without BGP running on core routers.
That should be an easy task if you configured MPLS in the past, so try to spice it up a bit:
In this series of blog posts, we’ll explore numerous routing protocol designs that can be used to implement EVPN-with-VXLAN L2VPNs in a leaf-and-spine data center fabric. Every design will come with a companion netlab topology you can use to create a lab and explore the behavior of leaf- and spine switches.
Our leaf-and-spine fabric will have four leaves and two spines (but feel free to adjust the lab topology fabric parameters to build larger fabrics). The fabric will provide layer-2 connectivity to orange and blue VLANs. Two hosts will be connected to each VLAN to check end-to-end connectivity.
In this series of blog posts, we’ll explore numerous routing protocol designs that can be used to implement EVPN-with-VXLAN L2VPNs in a leaf-and-spine data center fabric. Every design will come with a companion netlab topology you can use to create a lab and explore the behavior of leaf- and spine switches.
Our leaf-and-spine fabric will have four leaves and two spines (but feel free to adjust the lab topology fabric parameters to build larger fabrics). The fabric will provide layer-2 connectivity to orange and blue VLANs. Two hosts will be connected to each VLAN to check end-to-end connectivity.
An RSS hiccup brought an old blog post from Urs Baumann into my RSS reader. I’m always telling networking engineers that it’s essential to set up realistic WAN environments when testing distributed software, and wemulate (a nice tc front-end) seemed like a perfect match. Even better, it runs in a container – an ideal component for a netlab-generated virtual WAN network.
wemulate acts as a bump in the wire; it uses Linux bridges to connect two container interfaces. We’ll use it to introduce jitter into an IP subnet:
┌──┐ ┌────────┐ ┌──┐ │h1├───┤wemulate├───┤h2│ └──┘ └────────┘ └──┘ ◄──────────────────────► 192.168.33.0/24
An RSS hiccup brought an old blog post from Urs Baumann into my RSS reader. I’m always telling networking engineers that it’s essential to set up realistic WAN environments when testing distributed software, and wemulate (a nice tc front-end) seemed like a perfect match. Even better, it runs in a container – an ideal component for a netlab-generated virtual WAN network.
wemulate acts as a bump in the wire; it uses Linux bridges to connect two container interfaces. We’ll use it to introduce jitter into an IP subnet:
┌──┐ ┌────────┐ ┌──┐ │h1├───┤wemulate├───┤h2│ └──┘ └────────┘ └──┘ ◄──────────────────────► 192.168.33.0/24
Daryll Swer left a long comment describing how he designed a Service Provider network running in numerous private autonomous systems. While I might not agree with everything he wrote, it’s an interesting idea and conceptually pretty similar to what we did 25 years ago (IBGP without IGP, running across physical interfaces, with every router being a route-reflector client of every other router), or how some very large networks were using BGP confederations.
Just remember (as someone from Cisco TAC told me in those days) that “you might be the only one in the world doing it and might hit bugs no one has seen before.”
Daryll Swer left a long comment describing how he designed a Service Provider network running in numerous private autonomous systems. While I might not agree with everything he wrote, it’s an interesting idea and conceptually pretty similar to what we did 25 years ago (IBGP without IGP, running across physical interfaces, with every router being a route-reflector client of every other router), or how some very large networks were using BGP confederations.
Just remember (as someone from Cisco TAC told me in those days) that “you might be the only one in the world doing it and might hit bugs no one has seen before.”
In 2020, Lukas Krattiger ran a short webinar describing how to insert L4-L7 services into EVPN fabrics. The videos are now public, and you can view them without an ipSpace.net account.
If you’re an Internet Service Provider running BGP with your customers, you might not want to send them the whole Internet routing table. Sending the regional prefixes and the default route is usually good enough.
If you’re an Internet Service Provider running BGP with your customers, you might not want to send them the whole Internet routing table. Sending the regional prefixes and the default route is usually good enough.
Last week, I explained the differences between FRRouting and more traditional networking operating systems in scenarios where OSPF and IBGP advertise the same prefix:
One could conclude that it’s perfectly safe to advertise the same prefixes in OSPF and IBGP. The OSPF routes will be used within the autonomous system, and the IBGP routes will be propagated over EBGP to adjacent networks. Well, one would be surprised 🤦♂️
Last week, I explained the differences between FRRouting and more traditional networking operating systems in scenarios where OSPF and IBGP advertise the same prefix:
One could conclude that it’s perfectly safe to advertise the same prefixes in OSPF and IBGP. The OSPF routes will be used within the autonomous system, and the IBGP routes will be propagated over EBGP to adjacent networks. Well, one would be surprised 🤦♂️
Now and then, someone rediscovers that IS-IS does not run on top of CLNP or IP and claims that, therefore, it must be a layer-2 protocol. Even vendors’ documentation is not immune.
Interestingly, most routing protocols span the whole seven layers of the OSI stack, with some layers implemented internally and others offloaded to other standardized protocols.
Now and then, someone rediscovers that IS-IS does not run on top of CLNP or IP and claims that, therefore, it must be a layer-2 protocol. Even vendors’ documentation is not immune.
Interestingly, most routing protocols span the whole seven layers of the OSI stack, with some layers implemented internally and others offloaded to other standardized protocols.
netlab release 1.7.0 added the fabric plugin that simplifies building lab topologies with leaf-and-spine fabrics. All you have to do to build a full-blown leaf-and-spine fabric is:
For example, the following lab topology builds a fabric with Arista cEOS containers having two spines and four leaves:
netlab release 1.7.0 added the fabric plugin that simplifies building lab topologies with leaf-and-spine fabrics. All you have to do to build a full-blown leaf-and-spine fabric is:
For example, the following lab topology builds a fabric with Arista cEOS containers having two spines and four leaves:
Every time someone tries to persuade you to buy (expensive) big-buffer data center switches, take an antidote: the Things we (finally) know about network queues article by Avery Pennarun.
Every time someone tries to persuade you to buy (expensive) big-buffer data center switches, take an antidote: the Things we (finally) know about network queues article by Avery Pennarun.
All Routing Protocol Convergence videos from the How Networks Really Work webinar are now public. Enjoy!