While computing, storage and programming have dramatically changed and become simpler and cheaper over the last 20 years, however, IP networking has not. IP networking is still stuck in the era of mid-1990s.Realistically, when I look at ways to upgrade or improve a network, the approach falls into two separate buckets. One is the tactical move and the other is strategic. For example, when I look at IPv6, I see this as a tactical move. There aren’t many business value-adds.In fact, there are opposites such as additional overheads and minimal internetworking QoS between IPv4 & v6 with zero application awareness and still a lack of security. Here, I do not intend to say that one should not upgrade to IPv6, it does give you more IP addresses (if you need them) and better multicast capabilities but it’s a tactical move.To read this article in full, please click here
While computing, storage and programming have dramatically changed and become simpler and cheaper over the last 20 years, however, IP networking has not. IP networking is still stuck in the era of mid-1990s.Realistically, when I look at ways to upgrade or improve a network, the approach falls into two separate buckets. One is the tactical move and the other is strategic. For example, when I look at IPv6, I see this as a tactical move. There aren’t many business value-adds.In fact, there are opposites such as additional overheads and minimal internetworking QoS between IPv4 & v6 with zero application awareness and still a lack of security. Here, I do not intend to say that one should not upgrade to IPv6, it does give you more IP addresses (if you need them) and better multicast capabilities but it’s a tactical move.To read this article in full, please click here
It was about 20 years ago when I plugged my first Ethernet cable into a switch. It was for our new chief executive officer. Little did she know that she was about to share her traffic with most others on the first floor. At that time being a network engineer, I had five floors to be looked after.Having a few virtual LANs (VLANs) per floor was a common design practice in those traditional days. Essentially, a couple of broadcast domains per floor were deemed OK. With the VLAN-based approach, we used to give access to different people on the same subnet. Even though people worked at different levels but if in the same subnet, they were all treated the same.To read this article in full, please click here
It was about 20 years ago when I plugged my first Ethernet cable into a switch. It was for our new chief executive officer. Little did she know that she was about to share her traffic with most others on the first floor. At that time being a network engineer, I had five floors to be looked after.Having a few virtual LANs (VLANs) per floor was a common design practice in those traditional days. Essentially, a couple of broadcast domains per floor were deemed OK. With the VLAN-based approach, we used to give access to different people on the same subnet. Even though people worked at different levels but if in the same subnet, they were all treated the same.To read this article in full, please click here
It was about 20 years ago when I plugged my first Ethernet cable into a switch. It was for our new chief executive officer. Little did she know that she was about to share her traffic with most others on the first floor. At that time being a network engineer, I had five floors to be looked after.Having a few virtual LANs (VLANs) per floor was a common design practice in those traditional days. Essentially, a couple of broadcast domains per floor were deemed OK. With the VLAN-based approach, we used to give access to different people on the same subnet. Even though people worked at different levels but if in the same subnet, they were all treated the same.To read this article in full, please click here
The Web Application Firewall (WAF) issue didn't seem to me as a big deal until I actually started to dig deeper into the ongoing discussion in this field. It generally seems that vendors are trying to convince customers and themselves that everything is going smooth and that there is not a problem. In reality, however, customers don’t buy it anymore and the WAF industry is under a major pressure as constantly failing on the customer quality perspective.There have also been red flags raised from the use of the runtime application self-protection (RASP) technology. There is now a trend to enter the mitigation/defense side into the application and compile it within the code. It is considered that the runtime application self-protection is a shortcut to securing software that is also compounded by performance problems. It seems to be a desperate solution to replace the WAFs, as no one really likes to mix its “security appliance” inside the application code, which is exactly what the RASP vendors are currently offering to their customers. However, some vendors are adopting the RASP technology.To read this article in full, please click here
The Web Application Firewall (WAF) issue didn't seem to me as a big deal until I actually started to dig deeper into the ongoing discussion in this field. It generally seems that vendors are trying to convince customers and themselves that everything is going smooth and that there is not a problem. In reality, however, customers don’t buy it anymore and the WAF industry is under a major pressure as constantly failing on the customer quality perspective.There have also been red flags raised from the use of the runtime application self-protection (RASP) technology. There is now a trend to enter the mitigation/defense side into the application and compile it within the code. It is considered that the runtime application self-protection is a shortcut to securing software that is also compounded by performance problems. It seems to be a desperate solution to replace the WAFs, as no one really likes to mix its “security appliance” inside the application code, which is exactly what the RASP vendors are currently offering to their customers. However, some vendors are adopting the RASP technology.To read this article in full, please click here
John Kindervag, a former analyst from Forrester Research, was the first to introduce the Zero-Trust model back in 2010. The focus then was more on the application layer. However, once I heard that Sorell Slaymaker from Techvision Research was pushing the topic at the network level, I couldn’t resist giving him a call to discuss the generals on Zero Trust Networking (ZTN). During the conversation, he shone a light on numerous known and unknown facts about Zero Trust Networking that could prove useful to anyone. The traditional world of networking started with static domains. The classical network model divided clients and users into two groups – trusted and untrusted. The trusted are those inside the internal network, the untrusted are external to the network, which could be either mobile users or partner networks. To recast the untrusted to become trusted, one would typically use a virtual private network (VPN) to access the internal network.To read this article in full, please click here
John Kindervag, a former analyst from Forrester Research, was the first to introduce the Zero-Trust model back in 2010. The focus then was more on the application layer. However, once I heard that Sorell Slaymaker from Techvision Research was pushing the topic at the network level, I couldn’t resist giving him a call to discuss the generals on Zero Trust Networking (ZTN). During the conversation, he shone a light on numerous known and unknown facts about Zero Trust Networking that could prove useful to anyone. The traditional world of networking started with static domains. The classical network model divided clients and users into two groups – trusted and untrusted. The trusted are those inside the internal network, the untrusted are external to the network, which could be either mobile users or partner networks. To recast the untrusted to become trusted, one would typically use a virtual private network (VPN) to access the internal network.To read this article in full, please click here
Over the last few years, I have been sprawled in so many technologies that I have forgotten where my roots began in the world of data center. Therefore, I decided to delve deeper into what’s prevalent and headed straight to Ivan Pepelnjak's Ethernet VPN (EVPN) webinar hosted by Dinesh Dutt.I knew of the distinguished Dinesh since he was the chief scientist at Cumulus Networks, and for me, he is a leader in this field. Before reading his book on EVPN, I decided to give Dinesh a call to exchange our views about the beginning of EVPN. We talked about the practicalities and limitations of the data center. Here is an excerpt from our discussion.To read this article in full, please click here
Over the last few years, I have been sprawled in so many technologies that I have forgotten where my roots began in the world of data center. Therefore, I decided to delve deeper into what’s prevalent and headed straight to Ivan Pepelnjak EVPN webinar hosted by Dinesh Dutt.I knew of the distinguished Dinesh since he was the chief scientist at Cumulus Networks and for me; he is a leader in this field. Before reading his book on EVPN, I decided to give Dinesh a call to exchange our views about the beginning of EVPN. We talked about the practicalities and limitations of the data center. Here is an excerpt from our discussion.To read this article in full, please click here
Over the last few years, I have been sprawled in so many technologies that I have forgotten where my roots began in the world of data center. Therefore, I decided to delve deeper into what’s prevalent and headed straight to Ivan Pepelnjak EVPN webinar hosted by Dinesh Dutt.I knew of the distinguished Dinesh since he was the chief scientist at Cumulus Networks and for me; he is a leader in this field. Before reading his book on EVPN, I decided to give Dinesh a call to exchange our views about the beginning of EVPN. We talked about the practicalities and limitations of the data center. Here is an excerpt from our discussion.To read this article in full, please click here
If you still live in a world of the script-driven approach for both service provider and enterprise networks, you are going to reach limits. There is only so far you can go alone. It creates a gap that lacks modeling and database at a higher layer. Production-grade service provider and enterprise networks require a production-grade automation framework. In today's environment, the network infrastructure acts as the core centerpiece, providing critical connection points. Over time, the role of infrastructure has expanded substantially. In the present day, it largely influences the critical business functions for both the service provider and enterprise environments. To read this article in full, please click here
If you still live in a world of the script-driven approach for both service provider and enterprise networks, you are going to reach limits. There is only so far you can go alone. It creates a gap that lacks modeling and database at a higher layer. Production-grade service provider and enterprise networks require a production-grade automation framework. In today's environment, the network infrastructure acts as the core centerpiece, providing critical connection points. Over time, the role of infrastructure has expanded substantially. In the present day, it largely influences the critical business functions for both the service provider and enterprise environments. To read this article in full, please click here
At the present time, there is a remarkable trend for application modularization that splits the large hard-to-change monolith into a focused microservices cloud-native architecture. The monolith keeps much of the state in memory and replicates between the instances, which makes them hard to split and scale. Scaling up can be expensive and scaling out requires replicating the state and the entire application, rather than the parts that need to be replicated.In comparison to microservices, which provide separation of the logic from the state, the separation enables the application to be broken apart into a number of smaller more manageable units, making them easier to scale. Therefore, a microservices environment consists of multiple services communicating with each other. All the communication between services is initiated and carried out with network calls, and services exposed via application programming interfaces (APIs). Each service comes with its own purpose that serves a unique business value.To read this article in full, please click here
At the present time, there is a remarkable trend for application modularization that splits the large hard-to-change monolith into a focused microservices cloud-native architecture. The monolith keeps much of the state in memory and replicates between the instances, which makes them hard to split and scale. Scaling up can be expensive and scaling out requires replicating the state and the entire application, rather than the parts that need to be replicated.In comparison to microservices, which provide separation of the logic from the state, the separation enables the application to be broken apart into a number of smaller more manageable units, making them easier to scale. Therefore, a microservices environment consists of multiple services communicating with each other. All the communication between services is initiated and carried out with network calls, and services exposed via application programming interfaces (APIs). Each service comes with its own purpose that serves a unique business value.To read this article in full, please click here
Perimeter-based firewalls
When I stepped into the field of networking, everything was static and security was based on perimeter-level firewalling. It was common to have two perimeter-based firewalls; internal and external to the wide area network (WAN). Such layout was good enough in those days.I remember the time when connected devices were corporate-owned. Everything was hard-wired and I used to define the access control policies on a port-by-port and VLAN-by-VLAN basis. There were numerous manual end-to-end policy configurations, which were not only time consuming but also error-prone.There was a complete lack of visibility and global policy throughout the network and every morning, I relied on the multi router traffic grapher (MRTG) to manual inspect the traffic spikes indicating variations from baselines. Once something was plugged in, it was “there for life”. Have you ever heard of the 20-year-old PC that no one knows where it is but it still replies to ping? In contrast, we now live in an entirely different world. The perimeter has dissolved, resulting in perimeter-level firewalling alone to be insufficient.To read this article in full, please click here
Perimeter-based firewalls
When I stepped into the field of networking, everything was static and security was based on perimeter-level firewalling. It was common to have two perimeter-based firewalls; internal and external to the wide area network (WAN). Such layout was good enough in those days.I remember the time when connected devices were corporate-owned. Everything was hard-wired and I used to define the access control policies on a port-by-port and VLAN-by-VLAN basis. There were numerous manual end-to-end policy configurations, which were not only time consuming but also error-prone.There was a complete lack of visibility and global policy throughout the network and every morning, I relied on the multi router traffic grapher (MRTG) to manual inspect the traffic spikes indicating variations from baselines. Once something was plugged in, it was “there for life”. Have you ever heard of the 20-year-old PC that no one knows where it is but it still replies to ping? In contrast, we now live in an entirely different world. The perimeter has dissolved, resulting in perimeter-level firewalling alone to be insufficient.To read this article in full, please click here
Recently, I was reading a blog post by Ivan Pepelnjak on intent-based networking. He discusses that the definition of intent is "a usually clearly formulated or planned intention" and the word “intention” is defined as ’what one intends to do or bring about." I started to ponder over his submission that the definition is confusing as there are many variations.To guide my understanding, I decided to delve deeper into the building blocks of intent-based networking, which led me to a variety of closed-loop automation solutions. After extensive research, my view is that closed-loop automation is a prerequisite for intent-based networking. Keeping in mind the current requirements, it’s a solution that the businesses can deploy. To read this article in full, please click here
Recently, I was reading a blog post by Ivan Pepelnjak on intent-based networking. He discusses that the definition of intent is "a usually clearly formulated or planned intention" and the word “intention” is defined as ’what one intends to do or bring about." I started to ponder over his submission that the definition is confusing as there are many variations.To guide my understanding, I decided to delve deeper into the building blocks of intent-based networking, which led me to a variety of closed-loop automation solutions. After extensive research, my view is that closed-loop automation is a prerequisite for intent-based networking. Keeping in mind the current requirements, it’s a solution that the businesses can deploy. To read this article in full, please click here