From RAID and SANs to solid-state drives, innovative technologies have fueled the storage market.
Explaining enterprise networking to others can be challenging.
Wassim Haddad is at Ericsson Silicon Valley where he currently works on distributed cloud infrastructure. Heikki Mahkonen and Ravi Manghirmalani work at Ericsson Research at Silicon Valley in the advanced Networking and Transport labs. The Ericsson team has a diverse background in different NFV, SDN and Cloud related R&D projects.
The Network Function Virtualization (NFV) paradigm breaks away from traditional “monolithic” approaches, which normally build network functions by tightly coupling application code to the underlying hardware. Decoupling these components offers a new approach to designing and deploying network services. One that brings a high degree of flexibility in terms of separating their lifecycle management and enabling much more efficient scaling. Moreover, the move away from specialized hardware coupled with a “virtualize everything” trend is fuelling operators and service providers’ expectations of significant cost reductions. This is undoubtedly a strong motivation behind NFV adoption.
Current NFV market trends point towards two key technologies: Cloud Orchestration (e.g., OpenStack) to provision and manage workflows, and Software Defined Networking (SDN) to enable dynamic connectivity between different workflows as well as network slicing. In parallel, there is also a strong desire to migrate from virtual machines towards microservice enablers, Continue reading
NSF and GR are two features in Layer 3 network elements (NEs) that allows two adjacent elements to work together when one of them undergoes a control plane switchover or control plane restart.
The benefit is that when a control plane switchover/restart occurs, the impact to network traffic is kept to a minimum and in most cases, to zero.
It’s built on the AT&T Integrated Cloud.