Scale, SDN, and Network Virtualization
[This post was put together by Teemu Koponen, Andrew Lambeth, Rajiv Ramanathan, and Martin Casado]
Scale has been an active (and often contentious) topic in the discourse around SDN (and by SDN we refer to the traditional definition) long before the term was coined. Criticism of the work that lead to SDN argued that changing the model of the control plane from anything but full distribution would lead to scalability challenges. Later arguments reasoned that SDN results in *more* scalable network designs because there is no longer the need to flood the entire network state in order to create a global view at each switch. Finally, there is the common concern that calls into question the scalability of using traditional SDN (a la OpenFlow) to control physical switches due to forwarding table limits.
However, while there has been a lot of talk, there have been relatively few real-world examples to back up the rhetoric. Most arguments appeal to reason, argue (sometimes convincingly) from first principles, or point to related but ultimately different systems.
The goal of this post is to add to the discourse by presenting some scaling data, taken over a two-year period, from a production network virtualization Continue reading