In 2003, the world of network engineering was far different than it is today. For instance, EIGRP was still being implemented on the basis of its ability to support multi-protocol routing. SONET, and other optical technologies, were just starting to come into their own, and all optical switching was just beginning to be considered for large scale deployment. What Hartley says of history holds true when looking back at what seems to be a former age: “The past is a foreign country; they do things differently there.”
In the midst of this change, the Association for Computing Machinery (the ACM) published a paper entitled “Will IP really take over the world (of communications)?” This paper, written during the ongoing discussion within the engineering community over whether packet switching or circuit switching is the “better” technology, provides a lot of insight into the thinking of the time. Specifically, as the author say, the belief that IP is better:
…is based on our collective belief that packet switching is inherently superior to circuit switching because of the efficiencies of statistical multiplexing, and the ability of IP to route around failures. It is widely assumed that IP is simpler than circuit Continue reading
If accepted, it would create a WiFi, automotive, and location chip powerhouse.
The technology comes from HPE's $275 million SGI acquisition last year.
Interop ITX research reveals how companies plan to bolster their networks.
Network address translation: Sometimes you need more than a simple domain name.
The post Tier 1 carrier performance report: October, 2017 appeared first on Noction.
Everyone knows that Service Providers and Enterprise networks diverged decades ago. More precisely, organizations that offer network connectivity as their core business usually (but not always) behave differently from organizations that use networking to support their core business.
Obviously, there are grey areas: from people claiming to be service providers who can’t get their act together, to departments (or whole organizations) who run enterprise networks that look a lot like traditional service provider networks because they’re effectively an internal service provider.
Read more ...The November 2017 issue of the IETF Journal is now online at https://www.ietfjournal.org/journal-issues/november-2017/. With IETF 100 in Singapore starting this coming weekend, this is the perfect time to get caught up on what’s been happening in the world of Internet standards lately. (Starting next week, you can also learn more about the Internet Society’s work at IETF 100 via our series of Rough Guide blog posts.)
In this issue, you’ll learn about implementation work taking place in the Human Rights Protocol Considerations Research Group, the latest security updates to Network Time Protocol, new email-related Working Groups JMAP and EXTRA, as well as the important coding work that took place as part of the IETF Hackathon.
Our regular columns from the IETF, IAB, and IRTF chairs and coverage of the Birds-of-a-Feather meetings and presentations from the Applied Networking Research Prize winners wrap up the issue.
There will be print copies available at IETF in Singapore, the email version will hit subscribers’ inboxes in the coming days, and print subscribers will receive their issues shortly thereafter.
This issue marks the final hardcopy version of the IETF Journal. As we explain in “We’re Continue reading
Courtesy of @mahtin
As some of you may know, there's a wall of lava lamps in the lobby of our San Francisco office that we use for cryptography. In this post, we’re going to explore how that works in technical detail. This post assumes a technical background. For a higher-level discussion that requires no technical background, see Randomness 101: LavaRand in Production.
As we’ve discussed in the past, cryptography relies on the ability to generate random numbers that are both unpredictable and kept secret from any adversary. In this post, we’re going to go into fairly deep technical detail, so there is some background that we’ll need to ensure that everybody is on the same page.
In cryptography, the term random means unpredictable. That is, a process for generating random bits is secure if an attacker is unable to predict the next bit with greater than 50% accuracy (in other words, no better than random chance).
We can obtain randomness that is unpredictable using one of two approaches. The first produces true randomness, while the second produces pseudorandomness.
True randomness is any information learned through the Continue reading
Courtesy of @mahtin
As some of you may know, there's a wall of lava lamps in the lobby of our San Francisco office that we use for cryptography. In this post, we’re going to explore how that works. This post assumes no technical background. For a more in-depth look at the technical details, see LavaRand in Production: The Nitty-Gritty Technical Details.
As we’ve discussed in the past, cryptography relies on the ability to generate random numbers that are both unpredictable and kept secret from any adversary.
But “random” is a pretty tricky term; it’s used in many different fields to mean slightly different things. And like all of those fields, its use in cryptography is very precise. In some fields, a process is random simply if it has the right statistical properties. For example, the digits of pi are said to be random because all sequences of numbers appear with equal frequency (“15” appears as frequently as “38”, “426” appears as frequently as “297”, etc). But for cryptography, this isn’t enough - random numbers must be unpredictable.
To understand what unpredictable means, it helps to consider that all Continue reading
It’s time for the third and final IETF meeting of 2017. Starting on Sunday, 12 November, the Internet Engineering Task Force will be in Singapore for IETF 100, where about 1000 engineers will discuss the latest issues in open internet standards and protocols. All this week, we’re providing our usual Internet Society Rough Guide to the IETF via a series of blog posts on topics of mutual interest:
All these posts can be found on our blog and will be archived through our Rough Guide to IETF 100 overview page.
Here are some of the activities that the Internet Society is involved in and some of my personal highlights.
Catch up on highlights from IETF 99 in Prague by reading the IETF Journal. You can read all the articles online at https://www.ietfjournal.org, or pick up a hardcopy in Singapore.
This issue marks the final hardcopy version; starting in 2018, we’ll be shifting our focus to longer-form articles online and via our Twitter and Facebook channels. In the meantime, this issue has articles on the Human Rights Continue reading