The recent IBGP Full Mesh Between EVPN Leaf Switches blog post generated an interesting discussion on LinkedIn focused on whether we need route reflectors (in small fabrics) and whether they do more harm than good. Here are some of the highlights of that discussion, together with a running commentary.
The recent IBGP Full Mesh Between EVPN Leaf Switches blog post generated an interesting discussion on LinkedIn focused on whether we need route reflectors (in small fabrics) and whether they do more harm than good. Here are some of the highlights of that discussion, together with a running commentary.
Yes, you read that right. My Network Lab is indeed a text file (YAML file to be more specific). I can share the file with anyone, put it into version control, and never worry about re-creating the lab manually. No more clicking through the GUI and connecting interfaces. How is that even possible? You must be thinking this is clickbait right? Well, I'm talking about using Containerlab to create and manage your network topologies and labs.
I started my networking journey with Packet Tracer, then moved on to GNS3. Most of the time, I've used EVE-NG and some Cisco CML. EVE-NG is a great tool, and I still use it for building complex, large topologies with Cisco ISE, multiple firewalls, Active Directory, etc. But when it comes to labbing up pure networking protocols like BGP, OSPF, STP, or even simple IP routing, I needed something very simple that is easy to deploy and manage.
That's when I came across Containerlab which is a Lab-as-a-code tool that helps you set up and manage your network labs easily. Instead of dealing with complex setups and configurations, containerlab simplifies everything for you. Containerlab provides a command-line interface (CLI) that Continue reading
Many network automation solutions generate device configurations from a data model and deploy those configurations. Last week, we focused on “how do we know the device data model is correct?” This time, we’ll take a step further and ask ourselves, “how do we know the device configurations work as expected?”
There are four (increasingly complex) questions our tests should answer:
Many network automation solutions generate device configurations from a data model and deploy those configurations. Last week, we focused on “how do we know the device data model is correct?” This time, we’ll take a step further and ask ourselves, “how do we know the device configurations work as expected?”
There are four (increasingly complex) questions our tests should answer:
IPng’s network is built up in two main layers, (1) an MPLS transport layer, which is disconnected from the Internet, and (2) a VPP overlay, which carries the Internet. I created a BGP Free core transport network, which uses MPLS switches from a company called Centec. These switches offer IPv4, IPv6, VxLAN, GENEVE and GRE all in silicon, are very cheap on power and relatively affordable per port.
Centec switches allow for a modest but not huge amount of routes in the hardware forwarding tables. I loadtested them in [a previous article] at line rate (well, at least 8x10G at 64b packets and around 110Mpps), and they forward IPv4, IPv6 and MPLS traffic effortlessly, at 45 watts.
I wrote more about the Centec switches in [my review] of them back in 2022.
I leverage this internal transport network for more than just MPLS. The transport switches are perfectly capable of line rate (at 100G+) IPv4 and IPv6 forwarding as well. When designing IPng Site Local, I created a number plan that assigns IPv4 from the 198.19.0.0/16 prefix, and IPv6 from the 2001:678:d78:500::/56 prefix. Within these, I allocate blocks for Continue reading
Whether an enterprise is migrating its legacy application to a cloud-native architecture or deploying a new cloud-native application, it will face the challenge of integrating with security tools such as firewalls that rely on a stable network identity for security configuration. This is due to the fact that cloud-native workloads aren’t guaranteed to have a fixed network identity. The juxtaposition of dynamic, modern workloads alongside traditional applications that rely on fixed network identifiers presents a unique set of challenges.
This is particularly pertinent for DevOps and platform teams tasked with ensuring seamless communication and security between these disparate environments. It becomes crucial for DevOps, platforms, and network security teams to ensure seamless communication and secure traffic flow as organizations balance innovation (cloud-native applications) and harness existing investments (traditional firewalls and data sources).
One of the key challenges in integrating cloud-native workloads with legacy applications behind a firewall is securing and identifying traffic from specific workloads running in the cluster. Many applications, such as databases, are protected by firewalls that need a stable IP address to enable access to these applications. Teams want to ensure that only authorized traffic from specific workloads Continue reading
The 29th of May, in 7 days, I’m teaching a four-hour webinar/class on Safari Books Online:
This class isn’t just for network engineers, it’s for anyone interested in how the Internet works. You don’t need prior network engineering experience or knowledge to understand the content–so feel free to forward along to anyone you think might be Continue reading
Europe and the United States are completely different landscapes of Internet service providers. Which provides better service for customers, and which direction should these different markets go? Luke Kehoe joins Tom Ammon, Eyvonne Sharp, and Russ White to discuss the European market specifically, and why the European market needs consolidation.
In this section, we will first examine the update process of the BGP tables on the VTEP switch Leaf-102 when it receives a BGP Update message from Spine-11. After that, we will go through the update processes for the MAC-VRF and the MAC Address Table. Finally, we will examine how the VXLAN manager on Leaf-102 learns the IP address of Leaf-10's NVE interface and creates a unidirectional NVE peer record in the NVE Peer Database based on this information.
We have configured switches Leaf-101 and Leaf-102 as Route Reflector Clients on the Spine-11 switch. Spine-11 has stored the content of the BGP Update message sent by Leaf-101 in the neighbor-specific Adj-RIB-In of Leaf-101. Spine-11 does not import this information in its local BGP Loc-RIB because we have not defined a BGP import policy. Since Leaf-102 is an RR Client, the BGP process on Spine-11 copies this information in the neighbor-specific Adj-RIB-Out table for Leaf-102 and sends the information to Leaf-102 in a BGP Update message. The BGP process on Leaf-102 stores the received information from the Adj-RIB-In table to the BGP Loc-RIB according to the import policy of EVPN Instance 10010 (import RT 65000:10010). During the import process, the Route Distinguisher values are also modified to match the configuration of Leaf-102: change the RD value from 192.168.10.101:32777 (received RD) to 192.168.10.102:32777 (local RD).
AWS started charging for public IPv4 addresses a few months ago, supposedly to encourage users to move to IPv6. As it turns out, you need public IPv4 addresses (or a private link) to access many AWS services, clearly demonstrating that it’s just another way of fleecing the sheep Hotel California tax. I’m so glad I moved my videos to Cloudflare ;)
For more details, read AWS: Egress Traffic and Using AWS Services via IPv6 (rendered in beautiful, easy-to-read teletype font).
AWS started charging for public IPv4 addresses a few months ago, supposedly to encourage users to move to IPv6. As it turns out, you need public IPv4 addresses (or a private link) to access many AWS services, clearly demonstrating that it’s just another way of fleecing the sheep Hotel California tax. I’m so glad I moved my videos to Cloudflare ;)
For more details, read AWS: Egress Traffic and Using AWS Services via IPv6 (rendered in beautiful, easy-to-read teletype font).
To be clear, it is true that SuzieQ never rests but it is also true that SuzieQ always RESTS, that is, the SuzieQ REST API is available to answer your network questions and help automate your network workflows. In my previous post about SuzieQ we focused on getting started and asking questions about our network READ MORE
The post No Rest for SuzieQ appeared first on The Gratuitous Arp.