Archive

Category Archives for "Security"

Extend Your Fortinet FortiManager to Kubernetes

Companies are leveraging the power of Kubernetes to accelerate the delivery of resilient and scalable applications to meet the pace of business. These applications are highly dynamic, making it operationally challenging to securely connect to databases or other resources protected behind firewalls.

Visibility into Kubernetes Infrastructure is Essential

Lack of visibility has compliance implications. Like any on-premises or cloud-based networked services, Kubernetes production containers must address both organizational and regulatory security requirements. If compliance teams can’t trace the history of incidents across the entire infrastructure, they can’t adequately satisfy their audit requirements. To enable the successful transition of Kubernetes pilot projects to enterprise-wide application rollouts, companies must be able to extend their existing enterprise security architecture into the Kubernetes environment.

In response, Fortinet and Tigera jointly developed a suite of Calico Enterprise solutions for the Fortinet Security Fabric that deliver both north-south and east-west visibility and help ensure consistent control, security, and compliance. Key among these integrations is the FortiManager Calico Kubernetes Controller, which enables Kubernetes cluster management from the FortiManager centralized management platform in the Fortinet Fabric Management Center.

View and Control the Kubernetes Environment with FortiManager

The FortiManager Calico Kubernetes Controller translates FortiManager policies into granular Kubernetes network Continue reading

AppIQ – Unprecedented visibility that Aviatrix CoPilot brings

Earlier in my career, I worked as a Network Engineer in the high-frequency trading industry at a capital market exchange. It was the time when electronic trading was gaining heavy momentum as open outcry was receding. This was thanks mainly in part to vendors such as Arista who leveraged merchant silicon from Broadcom to lead … Continue reading AppIQ – Unprecedented visibility that Aviatrix CoPilot brings

Introducing API Shield

Introducing API Shield

APIs are the lifeblood of modern Internet-connected applications. Every millisecond they carry requests from mobile applications—place this food delivery order, “like” this picture—and directions to IoT devices—unlock the car door, start the wash cycle, my human just finished a 5k run—among countless other calls.

They’re also the target of widespread attacks designed to perform unauthorized actions or exfiltrate data, as data from Gartner increasingly shows: “by 2021, 90% of web-enabled applications will have more surface area for attack in the form of exposed APIs rather than the UI, up from 40% in 2019, and “Gartner predicted that, by 2022, API abuses will move from an infrequent to the most-frequent attack vector, resulting in data breaches for enterprise web applications”[1][2]. Of the 18 million requests per second that traverse Cloudflare’s network, 50% are directed towards APIs—with the majority of these requests blocked as malicious.

To combat these threats, Cloudflare is making it simple to secure APIs through the use of strong client certificate-based identity and strict schema-based validation. As of today, these capabilities are available free for all plans within our new “API Shield” offering. And as of today, the security benefits also extend to gRPC-based APIs, which use binary Continue reading

Speeding up HTTPS and HTTP/3 negotiation with… DNS

Speeding up HTTPS and HTTP/3 negotiation with... DNS

In late June, Cloudflare's resolver team noticed a spike in DNS requests for the 65479 Resource Record thanks to data exposed through our new Radar service. We began investigating and found these to be a part of Apple’s iOS14 beta release where they were testing out a new SVCB/HTTPS record type.

Once we saw that Apple was requesting this record type, and while the iOS 14 beta was still on-going, we rolled out support across the Cloudflare customer base.

This blog post explains what this new record type does and its significance, but there’s also a deeper story: Cloudflare customers get automatic support for new protocols like this.

That means that today if you’ve enabled HTTP/3 on an Apple device running iOS 14, when it needs to talk to a Cloudflare customer (say you browse to a Cloudflare-protected website, or use an app whose API is on Cloudflare) it can find the best way of making that connection automatically.

And if you’re a Cloudflare customer you have to do… absolutely nothing… to give Apple users the best connection to your Internet property.

Negotiating HTTP security and performance

Whenever a user types a URL in the browser box without specifying a Continue reading

Post-Quantum Cryptography: Hype and Reality

Post-quantum cryptography (algorithms resistant to quantum computer attacks) is quickly turning into another steaming pile of hype vigorously explored by various security vendors.

Christoph Jaggi made it his task to debunk at least some of the worst hype, collected information from people implementing real-life solutions in this domain, and wrote an excellent overview article explaining the potential threats, solutions, and current state-of-the art.

You (RFC 6919) OUGHT TO read his article before facing the first vendor presentation on the topic.

Post-Quantum Cryptography: Hype and Reality

Post-quantum cryptography (algorithms resistant to quantum computer attacks) is quickly turning into another steaming pile of hype vigorously explored by various security vendors.

Christoph Jaggi made it his task to debunk at least some of the worst hype, collected information from people implementing real-life solutions in this domain, and wrote an excellent overview article explaining the potential threats, solutions, and current state-of-the art.

You (RFC 6919) OUGHT TO read his article before facing the first vendor presentation on the topic.

Countering the Rise of Adversarial ML 

The security community has found an important application for machine learning (ML) in its ongoing fight against cybercriminals. Many of us are turning to ML-powered security solutions like NSX Network Detection and Response that analyze network traffic for anomalous and suspicious activity. In turn, these ML solutions defend us from threats better than other solutions can by drawing on their evolving knowledge of what a network attack looks like. 

Attackers are well-aware of the fact that security solutions are using AI and ML for security purposes. They also know that there are certain limitations when it comes to applying artificial intelligence to computer security. This explains why cyber criminals are leveraging ML to their advantage in something known as adversarial machine learning. 

In this post I’ll explain just what adversarial machine learning is and what it is not. To start, the label itself can be a bit misleading. It sounds like criminals are actually using ML as part of their attack. But that is not the case. The simple explanation is that they’re using more conventional methods to understand how security solutions are using ML so that they can then figure out how to Continue reading

Detecting Malware Without Feature Engineering Using Deep Learning 

Detecting Malware Without Feature Engineering Using Deep Learning 

Nowadays, machine learning is routinely used in the detection of network attacks and the identification of malicious programs. In most ML-based approaches, each analysis sample (such as an executable program, an office document, or a network request) is analyzed and a number of features are extracted. For example, in the case of a binary program, one might extract the names of the library functions being invoked, the length of the sections of the executable, and so forth. 

Then, a machine learning algorithm is given as input a set of known benign and known malicious samples (called the ground truth). The algorithm creates a model that, based on the values of the features contained in the samples, is the ground truth dataset, and the model is then able to classify known samples correctly. If the dataset from which the algorithm has learned is representative of the real-world domain, and if the features are relevant for discriminating between benign and malicious programs, chances are that the learned model will generalize and allow for the detection of previously unseen malicious samples. 

The Role of Feature Engineering 

Even though the description Continue reading

Machine Learning, Artificial Intelligence, and How the Two Fit into Information Security 

Everywhere I look, someone’s talking about machine learning (ML) or artificial intelligence (AI). These two technologies are shaping important conversations in multiple sectors, especially marketing and sales, and are at risk of becoming overused and misunderstood buzzwords, if they haven’t already. The technologies have also drawn the attention of security professionals over the past few years, with some believing that AI is ready to transform information security. 

Despite this hype, there’s still a lot of confusion around AI and ML and their utility for information security. In this blog post, I would like to correct some misperceptions. Let’s start by differentiating machine learning from artificial intelligence in general. 

Machine Learning vs. Artificial Intelligence: Understanding the Difference 

Artificial intelligence is the science of trying to replicate intelligent, human-like behavior. There are multiple ways of achieving this — machine learning is one of them. For example, a type of AI system that does not involve machine learning is an expert system, in which the skills and decision process of an expert are captured through a series of rules and heuristics. 

Machine Learning is a specific type of AI. An ML system analyzes a large data set in Continue reading

VMware Transit Connect – Simplifying Networking for VMC

The release of VMware Cloud on AWS (VMC) 1.12 brings a number of exciting new capabilities to the managed service offering. A comprehensive list can be reviewed in the release notes. A key feature that is now Generally Available (GA) in all VMC commercial regions worldwide is VMware Transit ConnectTM. VMware Transit Connect enables customers to build high-speed, resilient connections between their VMware Cloud on AWS Software Defined Data Centers (SDDCs) and other resources. This capability is enabled by a feature called SDDC Groups that helps customers to logically organize SDDCs together to simplify management.

The SDDC Group construct empowers customers to quickly and easily define a collection of SDDCs, Virtual Private Clouds (VPCs) or on-premises connectivity that need to interconnect. Additionally, the SDDC Group construct provides value inside the individual SDDCs by simplifying security policy as will be shown later in this post. Behind the simplification that SDDC Groups provide is the instantiation of an VMware Managed AWS Transit Gateway, a VTGW. The VTGW is a managed service from VMware and provides the underlying connectivity between the different resources.

The initial Transit Connect service provides three primary connectivity models:

Using Flow Tracking to Build Firewall Rulesets… and Halting Problem

Peter Welcher identified the biggest network security hurdle faced by most enterprise IT environments in his comment to Considerations for Host-based Firewalls (Part 1) blog post:

I have NEVER found a customer application team that can tell me all the servers they are using, their IP addresses, let alone the ports they use.

His proposed solution: use software like Tetration (or any other flow collecting tool) to figure out what’s really going on:

Reducing RPKI Single Point of Takedown Risk

The RPKI, for those who do not know, ties the origin AS to a prefix using a certificate (the Route Origin Authorization, or ROA) signed by a third party. The third party, in this case, is validating that the AS in the ROA is authorized to advertise the destination prefix in the ROA—if ROA’s were self-signed, the security would be no better than simply advertising the prefix in BGP. Who should be able to sign these ROAs? The assigning authority makes the most sense—the Regional Internet Registries (RIRs), since they (should) know which company owns which set of AS numbers and prefixes.

The general idea makes sense—you should not accept routes from “just anyone,” as they might be advertising the route for any number of reasons. An operator could advertise routes to source spam or phishing emails, or some government agency might advertise a route to redirect traffic, or block access to some web site. But … if you haven’t found the tradeoffs, you haven’t looked hard enough. Security, in particular, is replete with tradeoffs.

Every time you deploy some new security mechanism, you create some new attack surface—sometimes more than one. Deploy a stateful packet filter to protect a Continue reading

Why Don’t We Have Dynamic Firewall Policies

One of the readers of the Considerations for Host-Based Firewalls blog post wrote this interesting comment:

Perhaps a paradigm shift is due for firewalls in general? I’m thinking quickly here but wondering if we perhaps just had a protocol by which a host could request upstream firewall(s) to open access inbound on their behalf dynamically, the hosts themselves would then automatically inform the security device what ports they need/want opened upstream.

Well, we have at least two protocols that could fit the bill: Universal Plug and Play and Port Control Protocol (RFC 6887).

Cliché: Security through obscurity (yet again)

Infosec is a largely non-technical field. People learn a topic only as far as they need to regurgitate the right answer on a certification test. Over time, they start to believe misconceptions about that topic that they never learned. Eventually, these misconceptions displace the original concept in the community.

A good demonstration is this discussion of the "security through obscurity fallacy". The top rated comment makes the claim this fallacy means "if your only security is obscurity, it's bad". Wikipedia substantiates this, claiming experts advise that "obscurity should never be the only security mechanism".

Nope, nope, nope, nope, nope. It's the very opposite of what you suppose to understand. Obscurity has problems, always, even if it's just an additional layer in your "defense in depth". The entire point of the fallacy is to counteract people's instinct to suppress information. The effort has failed. Instead, people have persevered in believing that obscurity is good, and that this entire conversation is only about specific types of obscurity being bad.


Hypothetical: non-standard SSH

The above discussion mentions running SSH on a non-standard port, such as 7837 instead of 22, as a hypothetical example.

Let's continue this hypothetical. You do this. Then an 0day Continue reading

The New Model for Network Security: Zero Trust

The old security model, which followed the “trust but verify” method, is broken. That model granted excessive implicit trust that attackers abused, putting the organization at risk from malicious internal actors and allowing unauthorized outsiders wide-reaching access once inside. The new model, Zero Trust networking, presents an approach where the default posture is to deny access. Access is granted based on the identity of workloads, plus other attributes and context (like time/date, source, destination), and the appropriate trust required is offered at the time.

Calico Enterprise Zero Trust Network Security is one of the most effective ways for organizations to control access to their Kubernetes networks, applications, and data. It combines a wide range of preventative techniques including identity verification, least privilege controls, layered defense-in-depth, and encryption of data-in-transit to deter threats and limit access in the event of a breach. Kubernetes is particularly vulnerable to the spread of malware as a result of the open nature of cluster networking. By default, any pod can connect to any other pod, even across namespaces. Without a strong security framework, it’s very difficult to detect malware or its spread within a Kubernetes cluster.

Zero Trust policies rely on real-time visibility into workloads, Continue reading

Considerations for Host-based Firewalls (Part 1)

This is a guest blog post by Matthias Luft, Principal Platform Security Engineer @ Salesforce, and a regular ipSpace.net guest speaker.

Having spent my career in various roles in IT security, Ivan and I always bounced thoughts on the overlap between networking and security (and, more recently, Cloud/Container) around. One of the hot challenges on that boundary that regularly comes up in network/security discussions is the topic of this blog post: microsegmentation and host-based firewalls (HBFs).

Mitigating the Risks of Instance Metadata in AWS EKS

Compromising a pod in a Kubernetes cluster can have disastrous consequences on resources in an AWS Elastic Kubernetes Service (EKS) account if access to the Instance Metadata service is not explicitly blocked. The Instance Metadata service is an AWS API listening on a link-local IP address. Only accessible from EC2 instances, it enables the retrieval of metadata that is used to configure or manage an instance. Although you can only access instance metadata and user data from within the instance itself, the data is not protected by authentication or cryptographic methods.

A recent blog described a scenario where an attacker compromised a pod in an EKS cluster by exploiting a vulnerability in the web application it was running, thus enabling the attacker to enumerate resources in the cluster and in the associated AWS account. This scenario was simulated by running a pod and attaching to a shell inside it.

By querying the Instance Metadata service from the compromised pod, the attacker was able to access the service and retrieve temporary credentials for the identity and access management (IAM) role assigned to the EC2 instances acting as Kubernetes worker nodes. At that point, the attacker was able to pursue multiple exploits, Continue reading

Century Link/Level 3 Outage is one of the biggest Internet Problem! 3.5% Drop in Global Internet Traffic

Century Link Outage

 

On August 30, 2020, Level 3/Century Link, AS 3356 had major Internet outage. In fact this outage effected massive amount of networks, including very well know ones such as Amazon, Microsoft, Twitter, Discord, Reddit etc.

3.5% Global Internet Traffic was dropped due to this outage and entire network converged after almost 7 hours. This is huge amount of time. When we usually discuss convergence, specifically fast convergence, ‘Seconds’ if not ‘ Milliseconds ‘ are the target values.

No one wants to have minutes level network convergence. But when there is an Outage like this, we categorize them as ‘ Catastrophic Failures’ and unfortunately network design usually doesn’t take this kind of failures into an account.

But could it be prevented?

In the first place, let’s understand that, this event, similar to many other catastrophic network events, started at a single location. (According to a CenturyLink status page, the issue originated from CenturyLink’s data center in Mississauga, a city near Ontario, Canada.)

But it spread over entire backbone of AS3356.

In fact, I remember on 2014, which we famously know as 512k incident happened because of this network (Level 3) as well and that event also caused Continue reading

What’s the Big Deal About Multi-Cloud Networking – Part 2

If you were experiencing issues with Zoom calls today, you were not alone. But if you take a close look at today’s outage, it is clear that it was correlated with an AWS outage today. In fact, most of Zoom runs on AWS, according to AWS. This is despite Oracle’s claim that millions of users … Continue reading What’s the Big Deal About Multi-Cloud Networking – Part 2

Perimeter Security is Changing

The long standing tradition of having a secure network perimeter and a lightly protected interior has been going by the wayside for quite some time now. But the introduction of new models of connectivity are forcing us to change the way we look at security all together and invent whole new models for protecting our networks. In today’s episode we’re going to be exploring how these changes are impacting security and talk about some of these new models that meet the needs of modern networks.

 

Network Collective thanks NVIDIA for sponsoring today’s episode. NVIDIA is positioned as the leader in open networking and provides end-to-end solutions at all layers of the software and hardware stack. You can experience NVIDIA Cumulus in the Cloud for free!  Head on over to:

https://cumulusnetworks.com/automationpod

to see what a modern open network operating system looks like for yourself.

Mike Pfeiffer
Guest
Katherine McNamara
Guest
Tony Efantis
Host
Jordan Martin
Host

Outro Music:
Danger Storm Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0 License
http://creativecommons.org/licenses/by/3.0/

The post Perimeter Security is Changing appeared first on Network Collective.

1 27 28 29 30 31 181