Ethernet, STP, Topology change and the behaviour of Ethernet
Introduction
This post is inspired by a post at IEOC about Uplinkfast and TCN which
can be found here.
Before we get to those parts, let’s recap how Ethernet and STP work together.
Spanning Tree
The Spanning Tree Algorithm builds a loop free tree by comparing Bridge ID(BID) and
least cost paths to the root bridge. By doing this it blocks all links not leading
to the root.
MAC Learning
Switches learn where to forward frames by looking at the source MAC address of the frame
on the port that the frame was received on. This learning is done in the data plane
as opposed to routing where the routes are learned in control plane. I will come back
to this later in the post.
S4 learns that A is located on port 1 after A has sent a frame. This is stored in
the MAC address table located in Content Addressable Memory (CAM). The CAM is a
fast memory optimized for quick lookups in the table. By default there is a 300
second aging timeout for learned MAC addressesm, meaning that if the switch
does not see any traffic from a source MAC within five minutes the entry will
Continue reading







Last week, I spent a the majority of my commute time listening to a cybercrime novel by Mark Russinovich. This book, Trojan Horse, is the second of three books in the Jeff Aiken Novel series and didn’t disappoint in any way. In the past I read the electronic version of the first book, Zero Day. Whether or not you work in information security, you’ll likely find these books enjoyable. Having some grasp of the reach and dependance on information systems, I find these books are reasonably plausible. I plan to listen to the final installment in the series during my travels this week.