When we talk about women and technology, we need to talk data. In the United States, a recent report by the National Center for Women and Information Technology highlighted that only 26% of the workforce in the computer field is made up of women. In addition, a survey by Silicon Valley Bank revealed that 68% of startups do not have women on their board. In India, women make up just 30% of the workforce in the technology industry. In many European countries, the wage gap between men and women is present in technological positions. In Latin America, the proportion of women studying in computer careers is low. In addition, shortcomings in Internet access makes it difficult for women of all ages to use the technology in Africa.
Increasing access, skills, and leadership of women and girls in ICT has enormous potential for improving their health and emancipating them through access to information, education and trade opportunities, strengthening not only families and communities, but also national economies and global society as a whole.
In order to speak on a daily basis and to make the problem visible, we considered it necessary to create a Special Interest Group to help change those statistics Continue reading
This is a guest post by Elie Bursztein who writes about security and anti-abuse research. It was first published on his blog and has been lightly edited.
This post provides a retrospective analysis of Mirai — the infamous Internet-of-Things botnet that took down major websites via massive distributed denial-of-service using hundreds of thousands of compromised Internet-Of-Things devices. This research was conducted by a team of researchers from Cloudflare, Georgia Tech, Google, Akamai, the University of Illinois, the University of Michigan, and Merit Network and resulted in a paper published at USENIX Security 2017.
At its peak in September 2016, Mirai temporarily crippled several high-profile services such as OVH, Dyn, and Krebs on Security via massive distributed Denial of service attacks (DDoS). OVH reported that these attacks exceeded 1 Tbps—the largest on public record.
What’s remarkable about these record-breaking attacks is they were carried out via small, innocuous Internet-of-Things (IoT) devices like home routers, air-quality monitors, and personal surveillance cameras. At its peak, Mirai infected over 600,000 vulnerable IoT devices, according to our measurements.
This blog post follows the timeline above
This is a guest post by Elie Bursztein who writes about security and anti-abuse research. It was first published on his blog and has been lightly edited.
This post provides a retrospective analysis of Mirai — the infamous Internet-of-Things botnet that took down major websites via massive distributed denial-of-service using hundreds of thousands of compromised Internet-Of-Things devices. This research was conducted by a team of researchers from Cloudflare (Jaime Cochran, Nick Sullivan), Georgia Tech, Google, Akamai, the University of Illinois, the University of Michigan, and Merit Network and resulted in a paper published at USENIX Security 2017.
At its peak in September 2016, Mirai temporarily crippled several high-profile services such as OVH, Dyn, and Krebs on Security via massive distributed Denial of service attacks (DDoS). OVH reported that these attacks exceeded 1 Tbps—the largest on public record.
What’s remarkable about these record-breaking attacks is they were carried out via small, innocuous Internet-of-Things (IoT) devices like home routers, air-quality monitors, and personal surveillance cameras. At its peak, Mirai infected over 600,000 vulnerable IoT devices, according to our measurements.
This blog post follows the timeline above
Reports indicate AWS support could be waning.
Service providers say 5G challenges require using NFV, SDN, and MEC.
Everything in networking is acquiring an API. What happens to the command line interface?
I’ve run across a lot of interesting perspectives on ‘net Neutrality; to make things easier, I’ve pulled them onto a single page. For anyone who’s interested in hearing every side of the issue, this is a good collection of articles to read through.
The Colorado startup graduated from Techstars accelerator program this year.
One site in Chicago is already operational, and a second will come online this month.
Accessibility is human right.
People with disabilities want and need to use the Internet just like everyone else, but what can we do to reduce barriers? Especially when one billion people globally have a disability, with 80% living in developing countries.
But accessibility doesn’t just happen. Policymakers, program managers, and technical experts need to incorporate it into their work right from the start – and we need champions for accessibility to make it happen.
Everyone in the Internet community can contribute to reducing barriers! People working with policy, programs, communications, and education can incorporate accessibility.
It doesn’t just start with websites. While this type of access is crucial, we can go even further – accessible interfaces for the Internet of Things or phone apps are just two examples.
In addition, organizations can offer a more inclusive approach with:
Want to learn more about what you can do to make the Internet accessible for all? Read the W3C Introduction to Web Accessibility, and learn about the Continue reading
Cohn has been a leader in open source SDN and NFV.
We’re happy to announce that we now support all HTTP Cache-Control response directives. This puts powerful control in the hands of you, the people running origin servers around the world. We believe we have the strongest support for Internet standard cache-control directives of any large scale cache on the Internet.
Documentation on Cache-Control is available here.
Cloudflare runs a Content Distribution Network (CDN) across our globally distributed network edge. Our CDN works by caching our customers’ web content at over 119 data centers around the world and serving that content to the visitors nearest to each of our network locations. In turn, our customers’ websites and applications are much faster, more
available, and more secure for their end users.
A CDN’s fundamental working principle is simple: storing stuff closer to where it’s needed means it will get to its ultimate destination faster. And, serving something from more places means it’s more reliably available.
To use a simple banana analogy: say you want a banana. You go to your local fruit stand to pick up a bunch to feed your inner monkey. You expect the store to have bananas in stock, which would satisfy your request instantly. But, what if Continue reading
We’re happy to announce that we now support all HTTP Cache-Control response directives. This puts powerful control in the hands of you, the people running origin servers around the world. We believe we have the strongest support for Internet standard cache-control directives of any large scale cache on the Internet.
Documentation on Cache-Control is available here.
Cloudflare runs a Content Distribution Network (CDN) across our globally distributed network edge. Our CDN works by caching our customers’ web content at over 119 data centers around the world and serving that content to the visitors nearest to each of our network locations. In turn, our customers’ websites and applications are much faster, more
available, and more secure for their end users.
A CDN’s fundamental working principle is simple: storing stuff closer to where it’s needed means it will get to its ultimate destination faster. And, serving something from more places means it’s more reliably available.
To use a simple banana analogy: say you want a banana. You go to your local fruit stand to pick up a bunch to feed your inner monkey. You expect the store to have bananas in stock, which would satisfy your request instantly. But, what if Continue reading