In Episode 18 of Network Collective, Pete Lumbis of Cumulus Networks and Kevin Myers of IP Architechs join us to talk about the pros and cons of running whitebox or commodity hardware in your network. There’s no denying that the price point on commodity hardware is attractive but we discuss all you should consider when you’re looking to transition away from a major network hardware vendor.
Show Notes
What is whitebox networking?
Why whitebox networking?
In case you’ve missed it, this week we’re highlighting the top five most popular Docker blogs in 2017. Coming in the third place is the announcement of LinuxKit, a toolkit for building secure, lean and portable Linux Subsystems.

LinuxKit includes the tooling to allow building custom Linux subsystems that only include exactly the components the runtime platform requires. All system services are containers that can be replaced, and everything that is not required can be removed. All components can be substituted with ones that match specific needs. It is a kit, very much in the Docker philosophy of batteries included but swappable. LinuxKit is an open source project available at https://github.com/linuxkit/linuxkit.
To achieve our goals of a secure, lean and portable OS,we built it from containers, for containers. Security is a top-level objective and aligns with NIST stating, in their draft Application Container Security Guide: “Use container-specific OSes instead of general-purpose ones to reduce attack surfaces. When using a container-specific OS, attack surfaces are typically much smaller than they would be with a general-purpose OS, so there are fewer opportunities to attack and compromise a container-specific OS.”
The leanness directly helps with security by removing parts not Continue reading
Here is a list of our Top 5 sponsored posts of 2017
Virtualization becomes a bigger part of 5G discussion.
Five companies stand out for their strong hyperconverged moves.
An analysis of the pros and cons of Bluetooth Low Energy link-layer security for IoT protection.
I’ve blogged before about how the new integrity-checking filesystem in Windows, ReFS, doesn’t actually have integrity checking turned on by default. It’s pretty silly that for a modern filesystem meant to compete with ZFS and BtrFS, to have the main 21st century feature turned off by default. But it’s not quite ridiculous. Not yet.
Now it turns out that scrubbing is only supported on Windows Server
I used to say that Windows 10 is the best Windows ever, and that Microsoft kinda won my trust back. But what the hell?
I contacted Microsoft support over chat, who first suggested I do a system restore (sigh). But after I insisted that they please confirm that it’s supposed to work confirmed that no that only ships with Windows Server.
It’s not even clear from their pricing if I need the $882 Standard Edition or the $6,155 Datacenter Edition. Either one is way too much for such a standard feature.
What the hell, Microsoft? All I want is a checksumming file system. Either provide it, or don’t. Don’t give me a checksumming filesystem that can’t be Continue reading


Upgrading a security protocol in an ecosystem as complex as the Internet is difficult. You need to update clients and servers and make sure everything in between continues to work correctly. The Internet is in the middle of such an upgrade right now. Transport Layer Security (TLS), the protocol that keeps web browsing confidential (and many people persist in calling SSL), is getting its first major overhaul with the introduction of TLS 1.3. Last year, Cloudflare was the first major provider to support TLS 1.3 by default on the server side. We expected the client side would follow suit and be enabled in all major browsers soon thereafter. It has been over a year since Cloudflare’s TLS 1.3 launch and still, none of the major browsers have enabled TLS 1.3 by default.
The reductive answer to why TLS 1.3 hasn’t been deployed yet is middleboxes: network appliances designed to monitor and sometimes intercept HTTPS traffic inside corporate environments and mobile networks. Some of these middleboxes implemented TLS 1.2 incorrectly and now that’s blocking browsers from releasing TLS 1.3. However, simply blaming network appliance vendors would be disingenuous. The deeper truth of the Continue reading


Upgrading a security protocol in an ecosystem as complex as the Internet is difficult. You need to update clients and servers and make sure everything in between continues to work correctly. The Internet is in the middle of such an upgrade right now. Transport Layer Security (TLS), the protocol that keeps web browsing confidential (and many people persist in calling SSL), is getting its first major overhaul with the introduction of TLS 1.3. Last year, Cloudflare was the first major provider to support TLS 1.3 by default on the server side. We expected the client side would follow suit and be enabled in all major browsers soon thereafter. It has been over a year since Cloudflare’s TLS 1.3 launch and still, none of the major browsers have enabled TLS 1.3 by default.
The reductive answer to why TLS 1.3 hasn’t been deployed yet is middleboxes: network appliances designed to monitor and sometimes intercept HTTPS traffic inside corporate environments and mobile networks. Some of these middleboxes implemented TLS 1.2 incorrectly and now that’s blocking browsers from releasing TLS 1.3. However, simply blaming network appliance vendors would be disingenuous. The deeper truth of the Continue reading

It's the day after Christmas; or, depending on your geography, Boxing Day. With the festivities over, you may still find yourself stuck at home and somewhat bored.
Either way; here are three relatively short cryptography challenges, you can use to keep you momentarily occupied. Other than the hints (and some internet searching), you shouldn't require a particularly deep cryptography knowledge to start diving into these challenges. For hints and spoilers, scroll down below the challenges!

The first one is simple enough to explain; here are 5 hashes (from user passwords), crack them:
$2y$10$TYau45etgP4173/zx1usm.uO34TXAld/8e0/jKC5b0jHCqs/MZGBi
$2y$10$qQVWugep3jGmh4ZHuHqw8exczy4t8BZ/Jy6H4vnbRiXw.BGwQUrHu
$2y$10$DuZ0T/Qieif009SdR5HD5OOiFl/WJaDyCDB/ztWIM.1koiDJrN5eu
$2y$10$0ClJ1I7LQxMNva/NwRa5L.4ly3EHB8eFR5CckXpgRRKAQHXvEL5oS
$2y$10$LIWMJJgX.Ti9DYrYiaotHuqi34eZ2axl8/i1Cd68GYsYAG02Icwve
A website works by redirecting its www. subdomain to a regional subdomain (i.e. uk.), the site uses HSTS to prevent SSLStrip attacks. You can see cURL requests of the headers from the redirects below, how would you practically go about stripping HTTPS in this example?
$ curl -i http://www.example.com
HTTP/1.1 302 Moved Temporarily
Server: nginx
Date: Tue, 26 Dec 2017 12:26:51 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
location: https://uk.example.com/
$ curl -i http://uk.example.com
HTTP/1.1 200 OK
Server: nginx
Content-Type: text/html; Continue reading

It's the day after Christmas; or, depending on your geography, Boxing Day. With the festivities over, you may still find yourself stuck at home and somewhat bored.
Either way; here are three relatively short cryptography challenges, you can use to keep you momentarily occupied. Other than the hints (and some internet searching), you shouldn't require a particularly deep cryptography knowledge to start diving into these challenges. For hints and spoilers, scroll down below the challenges!

The first one is simple enough to explain; here are 5 hashes (from user passwords), crack them:
$2y$10$TYau45etgP4173/zx1usm.uO34TXAld/8e0/jKC5b0jHCqs/MZGBi
$2y$10$qQVWugep3jGmh4ZHuHqw8exczy4t8BZ/Jy6H4vnbRiXw.BGwQUrHu
$2y$10$DuZ0T/Qieif009SdR5HD5OOiFl/WJaDyCDB/ztWIM.1koiDJrN5eu
$2y$10$0ClJ1I7LQxMNva/NwRa5L.4ly3EHB8eFR5CckXpgRRKAQHXvEL5oS
$2y$10$LIWMJJgX.Ti9DYrYiaotHuqi34eZ2axl8/i1Cd68GYsYAG02Icwve
A website works by redirecting its www. subdomain to a regional subdomain (i.e. uk.), the site uses HSTS to prevent SSLStrip attacks. You can see cURL requests of the headers from the redirects below, how would you practically go about stripping HTTPS in this example?
$ curl -i http://www.example.com
HTTP/1.1 302 Moved Temporarily
Server: nginx
Date: Tue, 26 Dec 2017 12:26:51 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
location: https://uk.example.com/
$ curl -i http://uk.example.com
HTTP/1.1 200 OK
Server: nginx
Content-Type: text/html; Continue reading
Alibaba Cloud has 33 availability zones across 16 economic centers globally.
NFV gets into networks via SD-WAN, turnkey software stacks, and proprietary systems.
Learn how to use APIs for networking in this excerpt from "Building Modern Networks."

In honor of all the fervor around Bitcoin, we thought it would be fun to revisit the role finance has had in the history of technology even before the Internet came around. This was adapted from a post which originally appeared on the Eager blog.
The issue was not the lack of a rapid communication system in France, it just hadn’t expanded far enough yet. France had an elaborate semaphore system. Arranged all around the French countryside were buildings with mechanical flags which could be rotated to transmit specific characters to the next station in line. When the following station showed the same flag positions as this one, you knew the letter was acknowledged, and you could show the next character. This system allowed roughly one character to be transmitted per minute, with the start of a message moving down the line at almost 900 miles per hour. It wouldn’t expand to Toulouse until 1834 however, Continue reading

In honor of all the fervor around Bitcoin, we thought it would be fun to revisit the role finance has had in the history of technology even before the Internet came around. This was adapted from a post which originally appeared on the Eager blog.
The issue was not the lack of a rapid communication system in France, it just hadn’t expanded far enough yet. France had an elaborate semaphore system. Arranged all around the French countryside were buildings with mechanical flags which could be rotated to transmit specific characters to the next station in line. When the following station showed the same flag positions as this one, you knew the letter was acknowledged, and you could show the next character. This system allowed roughly one character to be transmitted per minute, with the start of a message moving down the line at almost 900 miles per hour. It wouldn’t expand to Toulouse until 1834 however, Continue reading