Hello my friend,
Today we are going to talk about the last data type, which in generally exists in Python and Go (Golang), and which we need dearly for all meaningful applications including network and IT infrastructure automation. We are talking about structured, typed data, which is represented in Python in form of objects and classes and in Go (Golang) in form of structs. These structures are truly powerful and once you figure out how to use them, I’m quite confident you will be using it everywhere, where you can.
This question I’ve been asked rather frequently recently. Indeed, why do we in each blog post talk about Network Automation Trainings, which gravitate around Python/Ansible duet. The answer is straightforward: whilst Go (Golang) is very powerful as we showing it in these blogs, its usage in many cases is justified only in very high-scale environment. For majority of networks and IT systems, Python is great. It is suffice to say that entire OpenStack is built in Python. And ourselves we use it extensively in many customers’ systems. Go (Golang) is useful as extension of automation skills, Continue reading
Addy Osmani published an excellent overview of the challenges of AI-assisted coding. They apply equally well to the “AI will generate device configurations for me” or “AI will troubleshoot my network” ideas (ignoring for the moment the impact of the orders-of-magnitude smaller training set), so it’s definitely worth reading.
I particularly liked the “AI is like having a very eager junior developer on your team” take, as well as the description of the “70% problem” (AI will get you 70% there, but the last 30% will be frustrating) – a phenomenon perfectly illustrated by the following diagram by Forrest Brazeal:
In this episode of the Hedge, Eyvonne, Tom, and Russ talk about whether Intel will survive, centralization and industrial spying, and why you need to go touch grass and read a book.
As much as I love explaining how to use BGP in an optimal way, sometimes we have to do what we know is bad to get the job done. For example, if you have to deal with clueless ISPs who cannot figure out how to use BGP communities, you might be forced to use the Big Hammer of disaggregated prefixes. You can practice how that works in the next BGP lab exercise.
Click here to start the lab in your browser using GitHub Codespaces (or set up your own lab infrastructure). After starting the lab environment, change the directory to policy/b-disaggregate
and execute netlab up.
My Internet Routing Security talk from last year’s DEEP conference (a shorter version of the Internet Routing Security webinar) is now available on YouTube.
Hope you’ll find it useful ;)
If you're in the Network Automation space or attended one of the last two Autocon events, you might have come across a new tool called 'Infrahub' from OpsMill. I've been keeping an eye on it and experimenting with the product for some time now. In this blog post, we'll cover how to install Infrahub, what it is, and walk through a simple example to get you started. Let's dive in.
Installing Infrahub is straightforward if you're familiar with Docker and have it installed. For this example, I'm using an Ubuntu 22.04 server with Docker and Docker Compose already set up. Here's all I had to do.
suresh@infrahub:~$ git clone https://github.com/opsmill/infrahub.git
Cloning into 'infrahub'...
remote: Enumerating objects: 95389, done.
remote: Counting objects: 100% (5707/5707), done.
remote: Compressing objects: 100% (2801/2801), done.
remote: Total 95389 (delta 3698), reused 4482 (delta 2877), pack-reused 89682
Receiving objects: 100% (95389/95389), 136.18 MiB | 40.26 MiB/s, done.
Resolving deltas: 100% (69451/69451), done.
suresh@infrahub:~$ cd infrahub/
suresh@infrahub:~/infrahub$ docker-compose up -d
[+] Running 70/7
✔ message-queue 10 layers [⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿] 0B/0B Pulled
✔ task-manager 13 layers Continue reading
Cloudflare’s AI Audit dashboard allows you to easily understand how AI companies and services access your content. AI Audit gives a summary of request counts broken out by bot, detailed path summaries for more granular insights, and the ability to filter by categories like AI Search or AI Crawler.
Today, we're going one step further. You can now quickly see which AI services are honoring your robots.txt policies, which aren’t, and then programmatically enforce these policies.
Robots.txt is a plain text file hosted on your domain that implements the Robots Exclusion Protocol, a standard that has been around since 1994. This file tells crawlers like Google, Bing, and many others which parts of your site, if any, they are allowed to access.
There are many reasons why site owners would want to define which portions of their websites crawlers are allowed to access: they might not want certain content available on search engines or social networks, they might trust one platform more than another, or they might simply want to reduce automated traffic to their servers.
With the advent of generative AI, AI services have started crawling the Internet to Continue reading
A fellow networking engineer recently remarked, “FRRouting automatically selects the correct [IBGP] source interface even when not configured explicitly.”
TL&DR: No, it does not. You were just lucky.
Basics first1. BGP runs over TCP sessions. One of the first things a router does when establishing a BGP session with a configured neighbor is to open a TCP session with the configured neighbor’s IP address.