The old security model, which followed the “trust but verify” method, is broken. That model granted excessive implicit trust that attackers abused, putting the organization at risk from malicious internal actors and allowing unauthorized outsiders wide-reaching access once inside. The new model, Zero Trust networking, presents an approach where the default posture is to deny access. Access is granted based on the identity of workloads, plus other attributes and context (like time/date, source, destination), and the appropriate trust required is offered at the time.
Calico Enterprise Zero Trust Network Security is one of the most effective ways for organizations to control access to their Kubernetes networks, applications, and data. It combines a wide range of preventative techniques including identity verification, least privilege controls, layered defense-in-depth, and encryption of data-in-transit to deter threats and limit access in the event of a breach. Kubernetes is particularly vulnerable to the spread of malware as a result of the open nature of cluster networking. By default, any pod can connect to any other pod, even across namespaces. Without a strong security framework, it’s very difficult to detect malware or its spread within a Kubernetes cluster.
Zero Trust policies rely on real-time visibility into workloads, Continue reading
This is a guest blog post by Matthias Luft, Principal Platform Security Engineer @ Salesforce, and a regular ipSpace.net guest speaker.
Having spent my career in various roles in IT security, Ivan and I always bounced thoughts on the overlap between networking and security (and, more recently, Cloud/Container) around. One of the hot challenges on that boundary that regularly comes up in network/security discussions is the topic of this blog post: microsegmentation and host-based firewalls (HBFs).
Compromising a pod in a Kubernetes cluster can have disastrous consequences on resources in an AWS Elastic Kubernetes Service (EKS) account if access to the Instance Metadata service is not explicitly blocked. The Instance Metadata service is an AWS API listening on a link-local IP address. Only accessible from EC2 instances, it enables the retrieval of metadata that is used to configure or manage an instance. Although you can only access instance metadata and user data from within the instance itself, the data is not protected by authentication or cryptographic methods.
A recent blog described a scenario where an attacker compromised a pod in an EKS cluster by exploiting a vulnerability in the web application it was running, thus enabling the attacker to enumerate resources in the cluster and in the associated AWS account. This scenario was simulated by running a pod and attaching to a shell inside it.
By querying the Instance Metadata service from the compromised pod, the attacker was able to access the service and retrieve temporary credentials for the identity and access management (IAM) role assigned to the EC2 instances acting as Kubernetes worker nodes. At that point, the attacker was able to pursue multiple exploits, Continue reading
On August 30, 2020, Level 3/Century Link, AS 3356 had major Internet outage. In fact this outage effected massive amount of networks, including very well know ones such as Amazon, Microsoft, Twitter, Discord, Reddit etc.
3.5% Global Internet Traffic was dropped due to this outage and entire network converged after almost 7 hours. This is huge amount of time. When we usually discuss convergence, specifically fast convergence, ‘Seconds’ if not ‘ Milliseconds ‘ are the target values.
No one wants to have minutes level network convergence. But when there is an Outage like this, we categorize them as ‘ Catastrophic Failures’ and unfortunately network design usually doesn’t take this kind of failures into an account.
But could it be prevented?
In the first place, let’s understand that, this event, similar to many other catastrophic network events, started at a single location. (According to a CenturyLink status page, the issue originated from CenturyLink’s data center in Mississauga, a city near Ontario, Canada.)
But it spread over entire backbone of AS3356.
In fact, I remember on 2014, which we famously know as 512k incident happened because of this network (Level 3) as well and that event also caused Continue reading
The long standing tradition of having a secure network perimeter and a lightly protected interior has been going by the wayside for quite some time now. But the introduction of new models of connectivity are forcing us to change the way we look at security all together and invent whole new models for protecting our networks. In today’s episode we’re going to be exploring how these changes are impacting security and talk about some of these new models that meet the needs of modern networks.
Network Collective thanks NVIDIA for sponsoring today’s episode. NVIDIA is positioned as the leader in open networking and provides end-to-end solutions at all layers of the software and hardware stack. You can experience NVIDIA Cumulus in the Cloud for free! Head on over to:
https://cumulusnetworks.com/automationpod |
Outro Music:
Danger Storm Kevin MacLeod (incompetech.com)
Licensed under Creative Commons: By Attribution 3.0 License
http://creativecommons.org/licenses/by/3.0/
The post Perimeter Security is Changing appeared first on Network Collective.
The story of Stuxnet, the first cyber weapon in history. Focus is on the manipulation of machinery at Natanz, with detailed explanations of machine configuration and operation. A few takeaways for myself after watching: The Stuxnet software impacted the Iranian nuclear program by damaging the project budget. Instead of blowing up the centrifuges, they increased […]
The post Background on Stuxnet appeared first on EtherealMind.
Hybrid cloud infrastructures run critical business resources and are subject to some of the strictest network security controls. Irrespective of the industry and resource types, these controls broadly fall into three categories.
Workloads (pods) running on Kubernetes are ephemeral in nature, and IP-based controls are no longer effective. The challenge is to enforce the organizational security controls on the workloads and Kubernetes nodes themselves. Customers need the following capabilities:
Network segmentation—splitting a network into subnetworks or segments—is widely accepted to be a powerful and effective method for improving cybersecurity within the data center. Yet even though it’s acknowledged to be an essential component of network security hygiene, organizations have frequently avoided putting segmentation into practice.
Why? Because historically network segmentation has been complex, disruptive, and time-consuming to implement, requiring extensive changes to the physical network and/or network addresses. The potential impact of taking applications offline for network changes means that many organizations decide to forego this industry-wide best practice. Teams that do forge ahead often face months- or years-long effort to create security zones by re–architecting the network, relocating equipment, and re-assigning IP addresses.
It doesn’t have to be that way. Today there’s an elegant solution that greatly simplifies and accelerates network segmentation: VMware NSX Service-defined Firewall. Purpose–built to protect east-west traffic, VMware Service-defined Firewall enables segmentation without any disruptive physical network or address changes.
To back up a step, let’s examine why network segmentation Continue reading
A firewall is a firewall, right? While on the surface that assumption may appear to be correct, a closer look reveals that there are critical differences between a traditional, appliance-based firewall that protects your network perimeter and a distributed, scale-out internal firewall that protects east-west traffic within your data center.
It’s true that both types of firewalls monitor network traffic, detect threats, and block malicious activity. However, appliance-based firewalls are designed to monitor north-south traffic, which has different volumes and characteristics than east-west traffic. Traditional north-south firewalls were never designed to be used interchangeably to protect both north-south and east-west traffic.
Figure 1: Data center traffic patterns
While it might appear to be the right choice, provisioning appliance-based firewalls for east-west traffic monitoring is not only expensive, it’s highly ineffective in delivering the level of control and performance required to protect growing numbers of dynamic workloads.
One of the most common drawbacks of using appliance-based firewalls as internal firewalls is the need to hairpin east-west traffic to and Continue reading
Early last year, before any of us knew that so many people would be working remotely in 2020, we announced that Cloudflare Access, Cloudflare’s Zero Trust authentication solution, would begin protecting the Remote Desktop Protocol (RDP). To protect RDP, customers would deploy Argo Tunnel to create an encrypted connection between their RDP server and our edge - effectively locking down RDP resources from the public Internet. Once locked down with Tunnel, customers could use Cloudflare Access to create identity-driven rules enforcing who could login to their resources.
Setting Tunnel up initially required installing the Cloudflare daemon, cloudflared, on each RDP server. However, as the adoption of remote work increased we learned that installing and provisioning a new daemon on every server in a network was a tall order for customers managing large fleets of servers.
What should have been a simple, elegant VPN replacement became a deployment headache. As organizations helped tens of thousands of users switch to remote work, no one had the bandwidth to deploy tens of thousands of daemons.
Message received: today we are announcing Argo Tunnel RDP Bastion mode, a simpler way to protect RDP connections at scale. ? By functioning as a Continue reading
In the first quarter of 2020, within a matter of weeks, our way of life shifted. We’ve become reliant on online services more than ever. Employees that can are working from home, students of all ages and grades are taking classes online, and we’ve redefined what it means to stay connected. The more the public is dependent on staying connected, the larger the potential reward for attackers to cause chaos and disrupt our way of life. It is therefore no surprise that in Q1 2020 (January 1, 2020 to March 31, 2020) we reported an increase in the number of attacks—especially after various government authority mandates to stay indoors—shelter-in-place went into effect in the second half of March.
In Q2 2020 (April 1, 2020 to June 30, 2020), this trend of increasing DDoS attacks continued and even accelerated:
To date, our blog series on securing physical servers with NSX Data Center has covered the use of bare metal agents installed in a physical server. In this scenario, NSX bare metal agents provide management and enforcement of security policy for the physical server. For a quick recap of how NSX Data Center secures physical server traffic, please review our first and second blogs in this multi-part series. In this article, we will discuss the use of one of the NSX-T Gateway services of an NSX Edge Node. Specifically, the NSX-T Gateway Firewall secures physical servers.
The NSX-T Edge is a feature-rich L3-L7 gateway. A brief review of some NSX-T Edge services:
Smart use of available resources.
The post Mirai Botnet Exploit Weaponized to Attack IoT Devices via F5 Appliances appeared first on EtherealMind.
Robert Graham wrote a great article explaining why CEOs don’t care much about cybersecurity or any other non-core infrastructure (including networking, unless you happen to be working for a service provider). It’s a must-read if you want to understand the **** you have to deal with in enterprise environments.
Every now and then a security researcher “discovers” a tunneling protocol designed to be used over a protected transport core and “declares it vulnerable” assuming the attacker can connect to that transport network… even though the protocol was purposefully designed that way, and everyone with a bit of clue knew the whole story years ago (and/or it’s even documented in the RFC).
It was MPLS decades ago, then VXLAN a few years ago, and now someone “found” a “high-impact vulnerability” in GPRS Tunnel Protocol. Recommended countermeasures: whitelist-based IP filtering. Yeah, it’s amazing what a wonderful new tool they found.
Unfortunately (for the rest of us), common sense never generated headlines on Hacker News (or anywhere else).
Today we are pleased to announce our partnership with Nutanix, creators of the industry’s most popular hyper-converged infrastructure (HCI) technology. HCI combines datacenter hardware using locally-attached storage resources with intelligent software to create flexible building blocks that replace legacy infrastructure consisting of separate servers, storage networks, and storage arrays.
Networking and securing microservices running Kubernetes and securely accessing external resources can be challenging, often requiring the use of overlay networks and NATs. At scale, this becomes extremely complex. Cloud-native enterprises seeking a consistent container networking experience across multiple cloud environments have adopted Calico, the de facto standard in open-source Kubernetes networking technologies.
Nutanix is now offering Calico as a component of Karbon, Nutanix’s enterprise Kubernetes management solution that enables turnkey provisioning, operations, and lifecycle management of Kubernetes. With this integration, Karbon users can now take advantage of simplified Kubernetes networking and production-grade network security based on Calico’s native tooling, providing scalable throughput that meets the performance demands of Karbon users.
“Karbon, now with Calico embedded, gives our customers significantly more powerful networking and network security capabilities while preserving the simplicity of provisioning and operating a Kubernetes cluster,” said Greg Muscarella, VP of Products at Nutanix. “Calico eliminates Continue reading
In the fight against relentless cyberattacks, organizations have long relied on traditional perimeter firewalls to protect sensitive workloads and information in the data center. But today, in the era of distributed applications and hybrid cloud environments, we know that perimeter defenses are not enough to stop cybercriminals.
To improve security postures inside corporate networks — which means protecting against both bad actors who penetrate perimeter defenses and malicious insiders — organizations must monitor, detect, and block hostile east-west (internal) traffic using internal firewalls.
To date, network and security professionals have generally viewed securing east-west traffic as too complex, expensive, and time-consuming for their brownfield, and even greenfield, data centers. At VMware, we agree with that perception: it’s certainly true for organizations trying to detect and prevent the lateral movement of attackers by employing traditional, appliance-based perimeter firewalls as internal firewalls.
Instead of awkwardly forcing appliance-based firewalls to serve as internal firewalls, organizations should employ a distributed, scale-out internal firewall specifically Continue reading
CEO : "I read about that Twitter hack. Can that happen to us?"— Wim Remes (@wimremes) July 16, 2020
Security : "Yes, but ..."
CEO : "What products can we buy to prevent this?"
Security : "But ..."
CEO : "Let's call Gartner."
*sobbing sounds*
Magic Transit is Cloudflare’s L3 DDoS Scrubbing service for protecting network infrastructure. As part of our ongoing investment in Magic Transit and our DDoS protection capabilities, we’re excited to talk about a new piece of software helping to protect Magic Transit customers: flowtrackd. flowrackd is a software-defined DDoS protection system that significantly improves our ability to automatically detect and mitigate even the most complex TCP-based DDoS attacks. If you are a Magic Transit customer, this feature will be enabled by default at no additional cost on July 29, 2020.
In the first quarter of 2020, one out of every two L3/4 DDoS attacks Cloudflare mitigated was an ACK Flood, and over 66% of all L3/4 attacks were TCP based. Most types of DDoS attacks can be mitigated by finding unique characteristics that are present in all attack packets and using that to distinguish ‘good’ packets from the ‘bad’ ones. This is called "stateless" mitigation, because any packet that has these unique characteristics can simply be dropped without remembering any information (or "state") about the other packets that came before it. However, when attack packets have no unique characteristics, then "stateful" mitigation is required, because whether a Continue reading