Upcoming Webinars and Events: October 2018

The fast pace of webinars continues in October 2018:

There are no on-site events planned until early December:

You can attend all upcoming webinars with an ipSpace.net webinar subscription. Online courses and on-site events require separate registration.

AWS ABCs — EC2 Internet Connectivity

So, you've created a compute instance (ie, a virtual machine) on Amazon EC2. Next question: does the instance require access to and/or from the Internet?

Protip: just because you created the instance in the public cloud, i.e. the cloud that you get to over the Internet, it doesn't mean that your instances all need to sit on the Internet. They can have direct inbound and outbound Internet access, no Internet access, or something in between (which I'll explain).

The basic building block for networking on AWS is the VPC (Virtual Private Cloud). Within a VPC, you define your IP space, gateways, ACLs, DHCP options, and more. Gateways will be the focus of this article.

Reference Guide Update: Deploying NSX Data Center on an ACI Underlay

NSX Data Center is now the de facto SDN standard for the Private Cloud. Reference guides for NSX Data Center are proven to reduce complexity in managing the physical switch infrastructure. This increases the infrastructures stability and requires a minimal set of system and service configuration to bring up the fabric. Organizations utilize NSX Data Center for a diverse set of use cases including security, a diverse application framework deployment platform, and application continuity across private and hybrid clouds.  With reference designs for any underlay, NSX Data Center is fulfilling its promise to be a platform over any infrastructure. NSX Data Center provides the cornerstone for the Virtual Cloud Network.

Overview of NSX Data Center with ACI Underlay

Ever since publishing our original design guide Deploying NSX with Cisco ACI as an Underlay, there has been an avalanche of interest in building out a more simplified Cisco infrastructure with ACI as the underlay. Most of the requests are for more detail when constructing the ACI underlay. The high-level design guidance in the original NSX reference design for ACI discussed the minimum ACI constructs necessary for an NSX Data Center deployment. These ideals have not changed.  The original paper called Continue reading

Intel makes a play for high-speed fiber networking for data centers

Intel is revamping its strategy around the data center by going beyond the Xeon chip and into silicon photonics transceivers. The company announced Monday at the European Conference on Optical Communications (ECOC) that samples of its silicon photonics transceivers targeting 5G wireless infrastructure and data centers are available now, with production set to start in the first quarter of 2019.The company notes that global data center IP traffic is increasing significantly. In 2016, global data center IP traffic was 6.8 zettabytes, and that will triple by 2021 because of all this data generated by humans and the Internet of Things (IoT).The choke point becomes copper wire, the standard for Ethernet connectivity. Copper wire can only effectively transmit about eight to 10 meters, said Eoin McConnell, director of marketing for the connectivity group in Intel’s data center group. Fiber optics can go as far as 10 kilometers.To read this article in full, please click here

Intel makes a play for high-speed fiber networking for data centers

Intel is revamping its strategy around the data center by going beyond the Xeon chip and into silicon photonics transceivers. The company announced Monday at the European Conference on Optical Communications (ECOC) that samples of its silicon photonics transceivers targeting 5G wireless infrastructure and data centers are available now, with production set to start in the first quarter of 2019.The company notes that global data center IP traffic is increasing significantly. In 2016, global data center IP traffic was 6.8 zettabytes, and that will triple by 2021 because of all this data generated by humans and the Internet of Things (IoT).The choke point becomes copper wire, the standard for Ethernet connectivity. Copper wire can only effectively transmit about eight to 10 meters, said Eoin McConnell, director of marketing for the connectivity group in Intel’s data center group. Fiber optics can go as far as 10 kilometers.To read this article in full, please click here

Intel makes a play for high-speed fiber networking for data centers

Intel is revamping its strategy around the data center by going beyond the Xeon chip and into silicon photonics transceivers. The company announced Monday at the European Conference on Optical Communications (ECOC) that samples of its silicon photonics transceivers targeting 5G wireless infrastructure and data centers are available now, with production set to start in the first quarter of 2019.The company notes that global data center IP traffic is increasing significantly. In 2016, global data center IP traffic was 6.8 zettabytes, and that will triple by 2021 because of all this data generated by humans and the Internet of Things (IoT).The choke point becomes copper wire, the standard for Ethernet connectivity. Copper wire can only effectively transmit about eight to 10 meters, said Eoin McConnell, director of marketing for the connectivity group in Intel’s data center group. Fiber optics can go as far as 10 kilometers.To read this article in full, please click here

BGP Security: A Gentle Reminder that Networking is Business

At NANOG on the Road (NotR) in September of 2018, I participated in a panel on BGP security—specifically the deployment of Route Origin Authentication (ROA), with some hints and overtones of path validation by carrying signatures in BGP updates (BGPsec). This is an area I have been working in for… 20 years? … at this point, so I have seen the argument develop across these years many times, and in many ways. What always strikes me about this discussion, whenever and wherever it is aired, is the clash between business realities and the desire for “someone to do something about routing security in the DFZ, already!” What also strikes me about these conversations it the number of times very fundamental concepts end up being explained to folks who are “new to the problem.”

TL;DR
  • BGP security is a business problem first, and a technology problem second
  • Signed information is only useful insofar as it is maintained
  • The cost of deployment must be lower than the return on that cost
  • Local policy will always override global policy—as it should
  • The fear of losing business is a stronger motivator than gaining new business

 

Part of the problem here is Continue reading