DDoS attacks, particularly for ransom—essentially, “give me some bitcoin, or we’ll attack your server(s) and bring you down,” seem to be on the rise. While ransom attacks rarely actually materialize, the threat of DDoS overall is very large, and very large scale. Financial institutions, content providers, and others regularly consume tens of gigabits of attack traffic in the normal course of operation. What can be done about stopping, or at least slowing down, these attacks?
To answer, this question, we need to start with some better idea of some of the common mechanisms used to build a DDoS attack. It’s often not effective to simply take over a bunch of computers and send traffic from them at full speed; the users, and the user’s providers, will often notice machine sending large amounts of traffic in this way. Instead, what the attacker needs is some sort of public server that can (and will) act as an amplifier. Sending this intermediate server should cause the server to send an order of a magnitude more traffic towards the attack target. Ideally, the server, or set of servers, will have almost unlimited bandwidth, and bandwidth utilization characteristics that will make the attack appear Continue reading
Today's Priority Queue climbs the Aruba certification ladder for wireless networking. Exam developer Kimberly Graves talks about what you'll learn, and offers training and testing insights.
The post PQ Show 82: Aruba Certifications Overview appeared first on Packet Pushers.
In the previous 2 posts I looked at the basics of EVPN including the new BGP based control-plane, later I looked at the integration between the layer-2 and layer-3 worlds within EVPN. However – all the previous examples were shown with basic single site networks with no link or device redundancy, this this post I’m going to look at the first and simplest EVPN redundancy mode.
First – consider the new lab topology:

The topology and configuration remains pretty much the same, except that MX-1 and MX-2 each connect back to EX4200-1, for VLAN 100 and VLAN 101, with the same IRB interfaces present on each MX router, essentially a very basic site with 2 PEs for redundancy.
Let’s recap the EVPN configuration on each MX1, I’ve got the exact same configuration loaded on MX-2 and MX-3, the only differences being the interface numbers and a unique RD for each site.
MX-1:
That includes Windows containers, as ContainerX likes to tell enterprises.
The cybersecurity and security solutions landscape is in constant flux.
$45 million in synergies is expected from the deal.