The Median Isn’t the Message - Stephen Jay Gould
When we think of regression, the most common one, which we all know, is linear regression. It is a fairly popular and simple technique for estimating the mean of some variable conditional on the values of independent variables.
Now imagine if you are a grocery delivery or ride-hailing service and want to show the customer the estimated delivery or wait times. If the distance is smaller, there will be less variability in the waiting time, but if the distance is longer, many things can go wrong, and due to that there can be a lot of variability in the estimate time. If we have to create a model to predict that, we may not want to apply linear regression as that will only tell us the average time.
It’s important to note that one of the key assumptions for applying linear regression is a constant variance (Homoskedasticity). However, many times this is often not the case. The variability is not constant (Heteroscedastic), which violates the linear regression assumption (Linear Regression Notes).
Let’s look at a running data for the distance vs. the time it takes to finish. We clearly know Continue reading
TL/DR
Calico 3.28 now has enabled VXLAN checksum offload by default for environments with the kernel version of 5.8 or above. In the past, offloading was disabled due to kernel bugs.
Please keep in mind, if you are upgrading to 3.28 this change will take effect after node restarts.
If you encounter unexpected performance issues, you can use the following command to revert to the previous method by using the following command:
kubectl patch felixconfiguration default --type="merge" -p='{"spec":{"FeatureDetectOverride":"ChecksumOffloadBroken=true"}'
Please keep in mind that you can report any issues via GitHub tickets or Slack and include a detailed description of the environment (NIC hardware, kernel, distro, Continue reading
Alexis Bertholf joins Tom Ammon and Russ White to discuss how we can make network engineering cool again—and to talk about how we got into network engineering.
I have seen companies achieve great successes in the space of consumer internet and entertainment industry. I’ve been feeling less enthusiastic about the stronghold that these corporations have over my digital presence. I am the first to admit that using “free” services is convenient, but these companies are sometimes taking away my autonomy and exerting control over society. To each their own of course, but for the last few years, I’ve been more and more inclined to take back a little bit of responsibility for my online social presence, away from centrally hosted services and to privately operated ones.
First off - I love Google’s Workspace products. I started using GMail just after it launched, back in 2004. Its user interface is sleek, performant, and very intuitive. Its filtering, granted, could be a bit less … robotic, but that’s made up by labels and an incredibly comprehensive search function. I would dare say that between GMail and Photos, those are my absolute favorite products on the internet.
That said, I have been running e-mail servers since well before Google existed as a company. I started off at M.C.G.V. Stack, the computer club of the University of Continue reading
All the Kubernetes Service Mesh videos from the Kubernetes Networking Deep Dive webinar with Stuart Charlton are now public. Enjoy!
When setting up a Kubernetes environment with Amazon Elastic Kubernetes Service (EKS), it is crucial to understand your available networking options. EKS offers a range of networking choices that allow you to build a highly available and scalable cloud environment for your workloads.
In this blog post, we will explore the networking and policy enforcement options provided by AWS for Amazon EKS. By the end, you will have a clear understanding of the different networking options and network policy enforcement engines, and other features that can help you create a functional and secure platform for your Kubernetes workloads and services.
Amazon Elastic Kubernetes Service (EKS) is a managed Kubernetes service that simplifies routine operations, such as cluster deployment and maintenance, by automating tasks such as patching and updating operating systems and their underlying components. EKS enhances scalability through AWS Auto Scaling groups and other AWS service integrations and offers a highly available control plane to manage your cluster.
Amazon EKS in the cloud has two options:
Managed clusters rely on the AWS control plane node, which AWS hosts and controls separately from your cluster. This node operates in isolation and cannot be directly Continue reading
Daniel Dib found the ancient OSPF Protocol Analysis (RFC 1245) that includes the Router CPU section. Please keep in mind the RFC was published in 1991 (35 years ago):
Steve Deering presented results for the Dijkstra calculation in the “MOSPF meeting report” in [3]. Steve’s calculation was done on a DEC 5000 (10 mips processor), using the Stanford internet as a model. His graphs are based on numbers of networks, not number of routers. However, if we extrapolate that the ratio of routers to networks remains the same, the time to run Dijkstra for 200 routers in Steve’s implementation was around 15 milliseconds.
Daniel Dib found the ancient OSPF Protocol Analysis (RFC 1245) that includes the Router CPU section. Please keep in mind the RFC was published in 1991 (35 years ago):
Steve Deering presented results for the Dijkstra calculation in the “MOSPF meeting report” in [3]. Steve’s calculation was done on a DEC 5000 (10 mips processor), using the Stanford internet as a model. His graphs are based on numbers of networks, not number of routers. However, if we extrapolate that the ratio of routers to networks remains the same, the time to run Dijkstra for 200 routers in Steve’s implementation was around 15 milliseconds.
The Academy does not replace this blog, the Hedge, etc. Instead, it’s a place for me to recreate all the training materials I’ve taught in the past, put them in one place, and adding new training material besides. It’s light right now, but I plan to post about once or twice a week.
Note this is a subscription site with paid content and two memberships–six months and yearly.
Get six months free using the coupon code BEAG2DRUP0TORNSKUT.
Managing consent online can be challenging. After you’ve figured out the necessary regulations, you usually need to configure some Consent Management Platform (CMP) to load all third-party tools and scripts on your website in a way that respects these demands. Cloudflare Zaraz manages the loading of all of these third-party tools, so it was only natural that in April 2023 we announced the Cloudflare Zaraz CMP: the simplest way to manage consent in a way that seamlessly integrates with your third-party tools manager.
As more and more third-party tool vendors are required to handle consent properly, our CMP has evolved to integrate with these new technologies and standardization efforts. Today, we’re happy to announce that the Cloudflare Zaraz CMP is now compatible with the Interactive Advertising Bureau Transparency and Consent Framework (IAB TCF) requirements, and fully supports Google’s Consent Mode v2 signals. Separately, we’ve taken efforts to improve the way Cloudflare Zaraz handles traffic coming from online bots.
Earlier this year, Google announced that websites that would like to use AdSense and other advertising solutions in the European Economic Area (EEA), the UK, and Switzerland, will be required to use a CMP that is approved by Continue reading
In the Dealing with LAG Member Failures blog post, we figured out how easy it is to deal with a LAG member failure in a traditional MLAG cluster. The failover could happen in hardware, and even if it’s software-driven, it does not depend on the control plane.
Let’s add a bit of complexity and replace a traditional layer-2 fabric with a VXLAN fabric. The MLAG cluster members still use an MLAG peer link and an anycast VTEP IP address (more details).
In the Dealing with LAG Member Failures blog post, we figured out how easy it is to deal with a LAG member failure in a traditional MLAG cluster. The failover could happen in hardware, and even if it’s software-driven, it does not depend on the control plane.
Let’s add a bit of complexity and replace a traditional layer-2 fabric with a VXLAN fabric. The MLAG cluster members still use an MLAG peer link and an anycast VTEP IP address (more details).
Like I mentioned in a previous post, normally leafs don’t connect to leafs, but for vPC this is required. What if we don’t want to use physical interfaces for this interconnection? This is where fabric peering comes into play. Now, unfortunately my lab, which is virtual, does not support fabric peering so I will just introduce you to the concept. Let’s compare the traditional vPC to fabric peering, starting with traditional vPC:
The traditional vPC has the following pros and cons:
Now let’s compare that to fabric peering:
Fabric peering has the following pros and cons: