PHY Basics: How OFDM Subcarriers Work
Have you ever wondered just "how" OFDM subcarriers are able to be spaced so tightly together without any guard band in-between? Most Wi-Fi textbooks will simply state that the spacing of the subcarriers allows the harmonics to overlap, thus canceling out any interference.
OFDM subcarrier spacing creates "nulls" canceling out inter-carrier interference (ICI) without the need for guard bands or expensive bandpass filters
OFDM divides a given channel into many narrower subcarriers. The spacing is such that the subcarriers are orthogonal, so they won’t interfere with one another despite the lack of guard bands between them. This comes about by having the subcarrier spacing equal to the reciprocal of symbol time. All subcarriers have a complete number of sine wave cycles that upon demodulation will sum to zero.
This tells us that the spacing of the subcarriers is directly related to the useful symbol time (more specifically, the amount of time the transmitter spends performing IFFT). Because of this relationship, the resulting sinc frequency response curves from each subcarrier create signal nulls in the adjacent subcarrier frequencies thus preventing inter-carrier interference (ICI). OFDM is a form of frequency division multiplexing (FDD), which typically requires guard bands between carriers and specialized hardware Continue reading