x86 is a high-level language
Just so you know, x86 machine-code is now a "high-level" language. What instructions say, and what they do, are very different things.I mention this because of those commenting on this post on OpenSSL's "constant-time" calculations, designed to avoid revealing secrets due to variations in compute time. The major comment is that it's hard to do this perfectly in C. My response is that it's hard to do this even in x86 machine code.
Consider registers, for example. Everyone knows that the 32-bit x86 was limited to 8 registers, while 64-bit expanded that to 16 registers. This isn't actually true. The latest Intel processors have 168 registers. The name of the register in x86 code is really just a variable name, similar to how variables work in high-level languages.
So many registers are needed because the processor has 300 instructions "in flight" at any point in time in various stages of execution. It rearranges these instructions, executing them out-of-order. Everyone knows that processors can execute things slightly out-of-order, but that's understated. Today's processors are massively out-of-order.
Consider the traditional branch pair of a CMP (compare) followed by a JMPcc (conditional jump). While this is defined as two separate instructions as Continue reading