Cloudflare operates in more than 285 cities in over 100 countries, where we interconnect with over 11,500 network providers in order to provide a broad range of services to millions of customers. The breadth of both our network and our customer base provides us with a unique perspective on Internet resilience, enabling us to observe the impact of Internet disruptions.
We entered 2023 with Internet disruptions due to causes that ran the gamut, including several government-directed Internet shutdowns, cyclones, a massive earthquake, power outages, cable cuts, cyberattacks, technical problems, and military action. As we have noted in the past, this post is intended as a summary overview of observed disruptions, and is not an exhaustive or complete list of issues that have occurred during the quarter.
Over the last six-plus months, government-directed Internet shutdowns in Iran have largely been in response to protests over the death of Mahsa Amini while in police custody. While these shutdowns are still occurring in a limited fashion, a notable shutdown observed in January was intended to prevent cheating on academic exams. Internet shutdowns with a similar purpose have been observed across a number of other countries, and have also occurred in Continue reading
One of my subscribers sent me this question:
I’m being asked to enter a working group on RPKI and route origination. I’m doing research, listening to Jeff Tantsura, who seems optimistic about taking steps to improve BGP security vs Geoff Huston, who isn’t as optimistic. Should I recommend to the group that the application security is the better investment?
You need both. RPKI is slowly becoming the baseline of global routing hygiene (like washing hands, only virtual, and done once every blue moon when you get new IP address space or when the certificates expire). More and more Internet Service Providers (including many tier-1 providers) filter RPKI invalids thus preventing the worst cases of unintentional route leaks.
One of my subscribers sent me this question:
I’m being asked to enter a working group on RPKI and route origination. I’m doing research, listening to Jeff Tantsura, who seems optimistic about taking steps to improve BGP security vs Geoff Huston, who isn’t as optimistic. Should I recommend to the group that the application security is the better investment?
You need both. RPKI is slowly becoming the baseline of global routing hygiene (like washing hands, only virtual, and done once every blue moon when you get new IP address space or when the certificates expire). More and more Internet Service Providers (including many tier-1 providers) filter RPKI invalids thus preventing the worst cases of unintentional route leaks.
Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from […]
The post Stable Diffusion Installation on Linux first appeared on Brezular's Blog.
One of the biggest advantages of IPv6 is the ease of renumbering thanks to SLAAC and DHCPv6. Easy renumbering of IPv6 addresses should, in theory, make some privacy protection methods easy to implement. Here's how it works, and and how it doesn't solve all privacy problems.
The post Privacy And Networking Part 8: IPv6 Addresses And Privacy appeared first on Packet Pushers.
SOC 2 is a compliance standard for service organizations, developed by the American Institute of CPAs (AICPA), which specifies how organizations should manage customer data. SOC 2 is based on five overarching Trust Services Criteria (TSC): security, availability, processing integrity, confidentiality, and privacy. Specifically, the security criteria are broken down into nine sections called common criteria (CC):
Running Kubernetes clusters often presents challenges for CC6 (logical and physical access), CC7 (systems operations), and CC8 (change management) when trying to comply with SOC 2 standards.
In this technical blog, we will dive into how Calico can help you achieve full compliance in achieving all the requirements of CC6. To understand how to achieve compliance with CC7 and CC8, you can review our SOC 2 white paper.
Control # | Compliance requirements | Calico controls |
CC 6.1, 6.6, 6.7, 6.8
|
Implement logical access security measures to authorized systems only, implement controls to prevent or detect and act upon Continue reading |
In the previous chapter, you learned how to route east-west traffic through the Network Virtual Appliance (NVA) using subnet-specific route tables with User Defined Routes (UDR). This chapter introduces how to route north-south traffic between the Internet and your Azure Virtual Network through the NVA.
Figure 3-1 depicts our VNet setup, which includes DMZ and Web Tier zones. The NVA, vm-nva-fw, is connected to subnet snet-north (10.0.2.0/24) in the DMZ via a vNIC with Direct IP (DIP) 10.0.2.4. We've also assigned a public IP address, 51.12.90.63, to this vNIC. The second vNIC is connected to subnet snet-west (10.0.0.0/24) in the Web Tier, with DIP 10.0.0.5. We have enabled IP Forwarding in both vNICs and Linux kernel. We are using Network Security Groups (NSGs) for filtering north-south traffic.
Our web server, vm-west, has a vNIC with DIP 10.0.0.4 that is connected to the subnet snet-west in the Web Tier. We have associated the route table to the subnet with the UDR, which forwards traffic to destination IP 141.192.166.81 (remote host) to NVA. To publish the web server to the internet, we've used the public IP of NVA.
On the NVA, we have configured a Destination NAT rule which rewrites the destination IP address to 10.0.0.4 to packets with the source IP address 141.192.166.81 and protocol ICMP. To simulate an http connection, we're using ICMP requests from a remote host.